1. Introduction
Heavy metal contamination in aquatic water bodies is a major concern that has a serious impact on the associated organisms, especially fish [1,2,3]. Heavy metals naturally exist in the environment, but excessive application in different industries for several purposes has significantly altered the ecological system [4] by the excessive discharge of these metals into the soil and aquatic systems [5,6]. Generally, anthropogenic activities, such as the culture of crop foods, erosion from agricultural fields, and the discharge of industrial and household wastes, are considered main sources of heavy metals in aquatic systems [7,8]. Once heavy metals enter the aquatic systems, they are dissolved in the water and easily accumulate in the different parts of aquatic living organisms, including fish, and subsequently enter into consumers of these contaminated fish [9]. The bioaccumulation of heavy metals in fish causes several complications for fish health and their physiological activities [10]. The severity of metal toxicity (carcinogenic, teratogenic, and mutagenic) varies significantly with the fish species, the level of the metals, and the period of exposure [11]. Aquatic organisms, including fish, can be contaminated with heavy metals sourced from both the water as well as sediments of the aquatic ecosystems [12]. Heavy metal-mediated toxicity adversely damages the nervous system of fish, which negatively disrupts the interaction of fish with the surrounding environment [13]. The uncontrolled use and accumulation of these metals have become an important issue of health concern as most do not have the ability to break down into nontoxic states and, hence, have destructive effects on human health as well as aquatic organisms [14,15,16]. Heavy metal contamination negatively affects the growth and reproductive activity of fish by lowering their gonadosomatic index (GSI), fecundity, fertilization, and hatching rate [17,18,19,20,21,22]. Moreover, the toxicity of heavy metals disrupts the normal growth and progress of fish embryos and larvae [3,23,24,25,26]. Although various metals are essential for living organisms [27,28], most are very dangerous, even in a very small amount [29,30]. Moreover, some of the metals, namely arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), zinc (Zn), etc., are not only highly toxic but also result in carcinogenicity and mutagenicity [31,32,33,34].
Although several physico-chemical methods are available to remove these toxic heavy metals, most of these techniques seem ineffective when the concentrations of metals are lower than 100 mg/L [35]. As many heavy metals are soluble in water and dissolve in contaminated water, it is very difficult to separate them through the application of physical methods [36]. In this situation, biological methods such as bioremediation can be an attractive solution to rectify the natural condition of the environment from heavy metal contamination [4]. Bioremediation is considered one of the most environmentally friendly and sustainable ways to reduce several aquatic contaminations, which plays a significant role in improving the production of associated aquaculture systems [37,38]. Generally, the bioremediation process is very effective in reducing the toxicity of heavy metals by converting them into less harmful forms with the help of either microbe [39,40] or their enzymes to lessen the contamination [41]. This is considered an ecofriendly and cost-effective method to revitalize the contaminated environment [36,42]. Microorganisms with catabolic potentiality or their derived substances, including enzymes and biological surfactants, are an innovative strategy to facilitate remediation efficiency [43,44,45]. Microorganisms have the capability to synthesize metals, and this is widely used as a green approach to reducing metal-associated contamination [46]. Synthesis of nanomaterials through different microorganisms has been widely employed in wastewater treatment throughout the world [47,48,49,50,51]. These nanoparticles synthesized by microorganisms can effectively remove and recycle heavy metals from heavy metal-contaminated aquatic systems without changing their stability [52]. Several studies reported that genetically transformed microorganisms could efficiently enhance the adsorption ability and be successfully used for the remediation process [53,54]. The remediation capacity of microorganisms can be enhanced with the combination of several modifications, including biochar, biosurfactants, compost, and inorganic nutrients [55,56,57]. Moreover, several modern approaches in microbe-intervened biotechnologies, such as rhizoremediation [58,59], genetically engineered organisms [4,60,61,62,63], and nanotechnological intervention in microbial bioremediation [64,65,66,67], have been widely applied in the bioremediation of several toxic heavy metals from the environment. Despite the destructive impact of heavy metal bioaccumulation in fish, no comprehensive information is available on the remediation of these toxic heavy metals in fishes. Therefore, the current review summarizes the recent information regarding bioaccumulation and developments in bioremediation techniques of heavy metals in fishes.
2. Bioaccumulation of Heavy Metals in Different Tissues of Fishes
Bioaccumulation assessment is one of the important indications for monitoring the geochemical cycle of heavy metals in the aquatic ecosystem. Toxic effects and oxidation of heavy metals vary with their forms and metal types, respectively. Chromium (Cr) generally exists in six different oxidative forms (+1 to +6), among which hexavalent Cr exerts destructive effects in fish [68]. Fish in heavy metal-contaminated aquatic systems pose a serious threat as fish accumulate metals through several important body tissues (gills, liver, kidney, skin, muscle, etc.), which are clearly illustrated in Figure 1. Fish require more energy, which is sourced from reserved nutrients, including protein, fats, and carbohydrates, to acclimate themselves in this stressed condition. Some of the metals (As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Zn) have redox potentiality, and they react to produce reactive oxygen species (ROS) that play an important role in maintaining a certain physiology in fish. ROS acts as an indicator of state oxidative stress that restricts the activity of cells through degrading protein, lipids, and DNA. Heavy metals bioaccumulate into different aquatic organisms through the food cycle and cause serious human health issues upon consumption of these contaminated fish [69,70,71,72,73]. Bioaccumulation of heavy metals in different fish organs is presented in Table 1, and different toxic effects of heavy metals in fish are demonstrated in Table 2.
2.1. As
As is one of the most toxic heavy metals which pollute aquatic water bodies by means of various natural as well as man-made actions [74]. It has been reported that inorganic As resulted in more toxic than organic forms [75,76]. As accumulates in different organs of fish (Table 1) at different rates [77,78]. It has been revealed that the highest amount of As (10.04 ± 2.99 μg/g) accumulated in the liver, whereas the lowest (3.74 ± 3.38 μg/g) was observed in muscle after 20 days of exposure by Oreochromis niloticus [57]. Several studies reported that As exposure caused various negative impacts on fish, such as growth and production reduction, hemato-biochemical changes, hormonal dysfunctions, histopathological anomalies, embryonic and larval development retardation, and other diseases [79,80,81,82,83]. Moreover, As toxicity significantly affected the hematology and immunology of several fish [84,85,86,87]. A high dose of As resulted in high mucus release, abnormal swimming, and loss of balance in Anabas testudineus and Danio rerio [88,89]. As stimulated the formation of apoptosis, micronuclei, and several cellular and nuclear abnormalities in erythrocytes of fish [82]. As induced several cytotoxicities and genotoxicities in medaka, Oryzias latipes [90]. Moreover, As contamination disrupted the reproductive activities of fish by inhibiting the gametogenesis process and, thus, negatively affecting sperm and ovum quality as well as quantity, fertilization, and hatching success [91,92,93].
2.2. Cd
Cd is very toxic and carcinogenic to humans and several animals, including fish. According to the Agency for Toxic Substances and Disease Registry of the United States, this metal ranks as the seventh most hazardous agent [94]. Several studies reported that the aquatic environment is significantly contaminated with Cd [95,96,97]. Assimilation and bioaccumulation of this toxic metal has occurred in a wide range of aquatic species (Table 1). Cd toxicity has resulted in the dysfunction of several important organs of fish, such as the liver, kidney, and gills, which affects the physiology of fish and hampers their growth [98,99,100]. Additionally, Cd alters the hematological indices by disturbing iron metabolism and creating anemic conditions [101,102]. Cd causes inhibition of antioxidant enzymes, inducing lipid peroxidation in animals [103,104]. Moreover, Cd toxicity negatively affects the reproductive performance of fish by shrinking the lobules of sperm, creating fibrosis in testis and lowering sperm motility and viability [19,76,105,106,107].
2.3. Cr
Cr is a ubiquitous metal that deteriorates the environment quality sourced from different types of industries [108,109]. Several studies reported the bioaccumulation of Cr in the different organs (Table 1) of Cyprinus carpio [110,111], Carassius auratus [112], O. aureus [113], and Cirrhinus mrigala [109]. Cr toxicity disturbs the physiological functions of fish and results in various allergic as well as organ-system failure [5,114,115,116,117]. Additionally, Cr toxicity significantly alters the protein, lipid, and glycogen content in the muscle, liver, and gills of Labeo rohita [118] and C. mrigala [119], causes hepatic stress in C. auratus [120], disturbs the functions of important organs (liver, kidney) of Ctenopharyngodon idella [121], and causes abnormal functions of the endocrine system of several freshwater fish species [68]. Cr was found to alter the blood profile, resulting in cellular and nuclear abnormalities of Pangasianodon hypophthalmus [1,117]. Several studies reported that high Cr levels in fish diets significantly decreased the growth and feed utilization of different fish species [122]. Moreover, chronic Cr exposure resulted in complexities in the reproduction of fish by lowering spawning success [123,124], deforming testis [19], decreasing sperm motility [105], and hampering the formation of oocytes [125].
2.4. Cu
Cu is a major contaminant of aquatic systems that results in stressful conditions for the aquatic organisms and significantly hampers the growth and physiology of fish [126,127,128]. The bioaccumulation of Cu in different organs of fish species is exhibited in Table 1. Several studies revealed that the liver is the main site that accumulates a significant proportion of Cu in comparison with the other organs [129,130,131]. Excess Cu in the fish diet reduced the fish appetite, thus negatively affecting the feed utilization and growth of fish [132]. Moreover, Cu toxicity not only resulted in deformed reproductive organs but also drastically reduced the GSI, fecundity, fertilization, and hatching rate of several fish species [18,21,133].
2.5. Mn
Mn is commonly found in a wide range of environments [134]. Mn was found to dissolve into water bodies through various anthropogenic activities [135]. Several factors, including fish species, age, and water quality, may vary Mn toxicity in fish [136]. It has been revealed that Mn toxicity declines with the increase in water hardness [134]. The bioaccumulation of Mn in the liver, gills, and muscles of Argyrosomus japonicas disturbed the metabolic process of carbohydrates and altered the ionic profile of blood plasma [137]. Mn affects the physiology of fish and sometimes exhibits fatal and lethal effects [134]. Mn exposure results in oxidative stress in C. auratus [138]. Mn results in many neurogenetical disorders by inducing the formation of free radicals and the inactivation of several enzymes associated with an antioxidant capacity [139]. Additionally, Mn damages the liver and induces cell apoptosis of grouper [140].
2.6. Ni
Ni is extensively used in different industrial activities and is considered a dominant contaminant of aquatic systems. Basically, Ni in aquatic ecosystems combines with other chemical compounds to form soluble salts that have the ability to adsorb onto other substances and cause several synergistic and antagonistic effects [141]. The severity of Ni toxicity depends on various factors such as Ni concentration, water quality, and the physiological state of organisms [142]. Several studies revealed that Ni accumulated in different organs of fish, especially in gills, and resulted in complexities in respiratory functions [143,144,145,146,147]. In addition, Ni was found to accumulate in the intestine of fish and disrupt the function of the intestine [148,149]. Ni alters the normal physiology and causes the death of several freshwater fish species [150]. Ni contamination induces several histological deformations of gills, including hyperplasia, hypertrophy, and fusion of gill lamellae in Orechromis niloticus [151]. Additionally, Ni toxicity hampers ion regulation [152,153,154] and induces oxidative stress in fish [155,156,157,158,159]. Two studies observed no significant impacts on fish growth [160,161]; however, they showed significant effects on the growth of pulmonate snails [162] and zebrafish [163].
2.7. Pb
Pb is a potent hazardous element that is bioaccumulated in aquatic organisms through water and feed [164]. Pb is bioaccumulated in different fish organs, including the liver, kidney, gills, spleen, and even the digestive system [165,166,167,168,169,170,171]. Pb significantly changes the blood parameters of fish [172,173,174,175,176]. Additionally, Pb toxicity results in a significant alteration in enzyme activity in blood plasma and the liver of fish that causes several pathologies in the cell membrane and shreds the liver cell [175,177,178,179]. Pb negatively affects the growth and feed utility of fish by reducing weight gain, specific growth rate, and feed intake [180,181,182,183]. Moreover, Pb results in poor reproductive performances such as low-quality sperm and ovum, reduced fertilization and hatching rate, low survival of embryo and larvae, etc. [17,20].
2.8. Zn
Zn is an essential micronutrient that plays a significant role in the growth and reproduction of fish [27,184,185]; however, an excess amount of Zn has several hazardous effects on fish [186]. Zn contamination in aquatic ecosystems is well established [187,188]. Liver and kidney tissues are the main sites for Zn bioaccumulation [189]. Zn toxicity negatively affects the growth [190,191,192], reproduction [22], homeostasis [193], feed intake [194,195,196], and bone formation of fish [197]. Zn toxicity induces ammonia excretion that results in poor water quality and stressful conditions for fish [191]. In addition, Zn toxicity damages the fish liver by increasing the activity of ALT and AST [198,199,200]. Moreover, high Zn levels significantly reduce the body protein and lipids of fish, which might result in the oxidation of protein and lipids, as well as low protein intake [201,202,203,204].
Table 1Bioaccumulation of heavy metals in different tissues of fish.
Species | Doses | Exposure Time (Days) | Organs | Bioaccumulation Rate | References |
---|---|---|---|---|---|
As | |||||
Oreochromis niloticus | 806.5 and 772.1 µg/g | 10 | Gills | 5.12 ± 0.61 μg/g | [78] |
Liver | 9.51 ± 1.68 μg/g | ||||
Muscle | 3.40 ± 0.24 μg/g | ||||
20 | Gills | 4.94 ± 4.62 μg/g | |||
Liver | 10.04 ± 2.99 μg/g | ||||
Muscle | 3.74 ± 3.38 μg/g | ||||
Siganus fuscescens | 400 and 1500 μg/g | 21/42 | liver | 63.3–91.3% | [77] |
Muscle | 79.0–95.2% | ||||
Cd | |||||
Oreochromis niloticus | 0, 0.1, and 1.0 mg/L | 30 | Gills | 22.34–32.26 µg/g | [111] |
Liver | 114.5–274.9 µg/g | ||||
Muscle | 2.02–2.50 µg/g | ||||
Oreochromis niloticus | 0, 1.68, 3.36, and 5.03 mg/L | 10 | Gills | 0.19–31.65 µg/g | [205] |
Liver | 0.29 µg/g | ||||
Muscle | 0.03 µg/g | ||||
20 | Gills | 0.28 µg/g | |||
Liver | 0.41–138.12 µg/g | ||||
Muscle | 0.08–1.41 µg/g | ||||
Cyprinus carpio | 5 mg/L | 32 | Gills | 6.23–6.94 μg/g | [110] |
Liver | 4.82–5.64 μg/g | ||||
Kidney | 4.31–5.32 μg/g | ||||
Oreochromis niloticus | 0.1 mg/L | 30 | Gills | 23.18 µg/g | [129] |
Liver | 114.5 µg/g | ||||
Muscle | 2.02 µg/g | ||||
1.0 mg/L | Gills | 32.26 µg/g | |||
Liver | 274.9 µg/g | ||||
Muscle | 2.50 µg/g | ||||
Oncorhynchus mykiss | 1.5 mg/kg | 36 | Gills | 0.20–0.30 μg/g | [206] |
Liver | 0.29–0.37 μg/g | ||||
Carcass | 0.19–0.32 μg/g | ||||
15 mg/kg | Gills | 0.18–0.20 μg/g | |||
Liver | 0.36–0.40 μg/g | ||||
Carcass | 0.28–1.18 μg/g | ||||
150 mg/kg | Gill | 0.24–0.32 μg/g | |||
Liver | 0.40–0.93 μg/g | ||||
Carcass | 0.37–1.67 μg/g | ||||
1500 mg/kg | Gills | 0.54–1.77 μg/g | |||
Liver | 1.20–6.47 μg/g | ||||
Carcass | 1.03–1.82 μg/g | ||||
Oreochromis niloticus | 0.0,1.68, 3.36, and 5.03 mg/L | 30 | Gills | 0.32–61.73 µg/g | [205] |
Liver | 0.96–181.61 µg/g | ||||
Muscle | 0.12–2.16 µg/g | ||||
Oncorhynchus mykiss | 0.0 and 3.0 µg/L | 30 | Gill | 0.72–6.48 µg /g | [207] |
Liver | 1.29–3.87 µg /g | ||||
Kidney | 0.47–9.40 µg /g | ||||
Cr | |||||
Cyprinus carpio | 0.0, 3.41 mg/L | 4 | Gills | 0.65–0.80 µg/g | [111] |
Intestine | 0.50–0.60 µg/g | ||||
Muscles | 0.40–0.45 µg/g | ||||
Skin | 0.30–0.35 µg/g | ||||
Bone | 0.60–0.60 µg/g | ||||
Carassius auratus | 4.00 mg/L | 1 | Gills | 5.43 μg/g | [112] |
Intestine | 3.9 μg/g | ||||
Skin | 3.21 μg/g | ||||
6.00 mg/L | 2 | Gills | 5.04 μg/g | ||
Intestine | 3.72 μg/g | ||||
Skin | 3.18 μg/g | ||||
8.00 mg/L | Gills | 4.69 μg/g | |||
Intestine | 3.63 μg/g | ||||
Skin | 3.03 μg/g | ||||
12.00 mg/L | Gill | 4.11 μg/g | |||
Intestine | 3.51 μg/g | ||||
Skin | 1.98 μg/g | ||||
Oreochromis aureus | 0, 10, 15, 20, 25, and 30 mg/L | 28 | Gills | 3.06–44.83 μg/g | [113] |
Skin | 2.72–25.3 μg/g | ||||
Muscle | 1.25–12.25 μg/g | ||||
Cirrhinus mrigala | 1.82 mg/L | 7–28 | Gills | 16.54–48.74 μg/g | [109] |
Liver | 27.52–87.33 μg/g | ||||
Kidney | 21.23–97.33 μg/g | ||||
Muscle | 12.23–48.64 μg/g | ||||
6.07 mg/L | Gills | 19.82–36.83 μg/g | |||
Liver | 51.63–78.93 μg/g | ||||
Kidney | 37.72–162.64 μg/g | ||||
Muscle | 27.83–91.23 μg/g | ||||
Cyprinus carpio | 5 mg/L | 32 | Gills | 2.25–3.56 μg/g | [110] |
Liver | 2.66–4.27 μg/g | ||||
Kidney | 2.773–3.233 μg/g | ||||
Cu | |||||
Oreochromis sp. | 0.0, 0.50, 1.0, 3.0, and 5.0 mg/L | Gills | 6.3–38.4 mg/kg | [131] | |
Liver | 19.4–136 mg/kg | ||||
Muscle | 1.4–4.0 mg/kg | ||||
Sparus aurata | 0.0 and 0.1 mg/L | 11 | Gills | 1.26–5.03 µg/g | [208] |
Liver | 3.24–7.02 µg/g | ||||
Muscle | 0.85–1.49 µg/g | ||||
Mystus vittatus | 0.0 and 5.98 mg/L | 28 | Gills | 9.84–63.69 µg/g | [130] |
Liver | 10.63–70.65 µg/g | ||||
Kidney | 8.77–54.09 µg/g | ||||
Muscle | 0.32–0.86 µg/g | ||||
Oreochromis niloticus | 0.0, 0.1, and 1.0 mg/L | 30 | Gills | 7.02–40.67 µg/g | [129] |
Liver | 12.31–618.6 µg/g | ||||
Muscle | 1.49–62 µg/g | ||||
Oreochromis niloticus | 0.1 mg/L | 30 | Liver | 589.5 µg/g | [129] |
Gills | 27.52 µg/g | ||||
Muscle | 4.54 µg/g | ||||
1.0 mg/L | Gills | 40.67 µg/g | |||
Liver | 618.61 µg/g | ||||
Muscle | 6.20 µg/g | ||||
Mn | |||||
Cyprinus carpio | 0.0, 1.12, and 3.41 mg/L | 4 | Gills | 0.49–0.93 µg/g | [111] |
Intestine | 0.07–0.18 µg/g | ||||
Muscles | 0.07–0.12 µg/g | ||||
Skin | 0.04–0.1 µg/g | ||||
Bone | 0.03–0.07 µg/g | ||||
Ni | |||||
Cyprinus carpio | 5 mg/L | 32 | Gills | 3.17–3.94 μg/g | [110] |
Liver | 3.75–4.80 μg/g | ||||
Kidney | 0.15–1.61 μg/g | ||||
Pb | |||||
Clarias gariepinus | 0, 16, 32, and 48 mg/L | 10 | Gills | 0.17–9.60 mg/100 g | [171] |
Liver | 0.08–4.42 mg/100 g | ||||
Muscles | 0.23–0.96 mg/100 g | ||||
Skin | 0.09–1.14 mg/100 g | ||||
20 | Gills | 0.16–19.18 mg/100 g | |||
Liver | 0.12–5.54 mg/100 g | ||||
Muscles | 0.19–1.27 mg/100 g | ||||
Skin | 0.07–0.32 mg/100 g | ||||
Carassius auratus | 0.09, 0.15, 0.24, 0.3, 0.36, and 0.45 mg/L | 28 | Gills | 0.00–0.71 mg/g | [169] |
Muscle | 0.00–0.23 mg/g | ||||
Visceral | 0.00–3.65 mg/g | ||||
Clarias gariepinus | 0.032, 0.052, and 0.160 mg/L | 56 | Gills | 33.49 µg/g | [168] |
Liver | 26.94 µg/g | ||||
Muscle | 12.63 µg/g | ||||
Catla catla | 0.0, 1.0, 2.5, 5.0, 7.5, and 10.0 µg/L | 42 | Gills | 4.71 µg/g | [209] |
Skin | 4.92 μg/g | ||||
Eyes | 4.51 µg/g | ||||
Liver | 4.79 µg/g | ||||
Muscle | 4.41 µg/g | ||||
Intestine | 4.21 µg/g | ||||
Oreochromis niloticus | 0, 100, 400, and 800 μg/g | 60 | Liver | 0.021–4.163 μg/g | [167] |
Stomach | 0.025–11.68 μg/g | ||||
Intestine | 0.021–31.75 μg/g | ||||
Cyprinus carpio | 5 mg/L | 32 | Gills | 4.28–4.99 μg/g | [110] |
Liver | 7.33–8.74 μg/g | ||||
kidney | 6.33–6.94 μg/g | ||||
Oncorhynchus mykiss | 7, 77, and 520 µg/g | 21 | Gills | 8.0 μg/g | [210] |
Intestine | 17.8 µg/g | ||||
Liver | 1.9 μg/g | ||||
Kidney | 2.4 μg/g | ||||
Carcass | 2.7 μg/g | ||||
Zn | |||||
Oreochromis sp. | 0.0, 0.50, 1.0, 3.0, and 5.0 mg/L | 4 | Gills | 49.5–98.1 mg/kg | [111] |
Liver | 93.9–422.8 mg/kg | ||||
Muscle | 11.5–30.8 mg/kg | ||||
Oreochromis Niloticus | 0.0, 3.5, and 7.0 mg/L | 45 | Gills | 22.8–83.2 mg/L | [189] |
Liver | 24.9–109.5 mg/L | ||||
kidney | 24.6–93.5 mg/L | ||||
Muscles | 9.5–20.2 mg/L | ||||
Sparus aurata | 0.0 and 0.1 mg/L | 11 | Gills | 23.72–28.94 µg/g | [208] |
Liver | 24.57–39.56 µg/g | ||||
Muscle | 18.13–19.36 µg/g | ||||
Channa punctatus | 6.62 and |
45 | Muscle | 4.95–5.29 µg/g | [186] |
Heavy metals toxicity in fishes.
Species | Toxicity | References |
---|---|---|
As | ||
Clarias batrachus | Hematological: Serum protein level significantly declined | [211] |
Tilapia mossambica | Hemato-biochemical: WBC, MCH, and MCHC levels increased while Hb, RBC, and PCV levels decreased significantly | [212] |
Oreochromis mossambicus | Gill: Joined lamellae, hyperplasia, and necrosis noticed in epithelial cells |
[213] |
Clarias batrachus | Kidney: Vacuoles, melanomacrophages | [86] |
Danio rerio | Reproduction: Number of eggs, spawns, and hatching rate significantly declined | [92] |
Cd | ||
Catla catla | Gill: Atrophy, telangiectasia, and necrosis |
[214] |
Mystus seenghala | Poor growth as well as feed utility | [215] |
Pelteobagrus fulvidraco | Significantly lowered weight gain and specific growth rate | [216] |
Clarias gariepinus | Hemato-biochemical: AST, ALP, ALT, Cort, Glu, and MCH increased while CK, TLC, and MCV decreased | [217] |
Channa striata | Hemato-biochemical: HDL, LDL, TP, AST, and ALT increased while Glu level decreased | [218] |
Cyprinus carpio | Gill: Spiked and fused lamellae, club-shaped epithelial filaments in lamellae |
[219] |
Cyprinus carpio | Gill: Fused gill lamellae, widened vessel, hyperemia, and hyperplasia in epithelial cells | [170] |
Labeo rohita | Hemato-biochemical: WBC level increased significantly while RBC and Hct decreased significantly | [220] |
Cr | ||
Pangasianodon hypophthalmus | Blood cells: Caused erythrocytic cellular and nuclear complexities |
[1] |
Oryzias melastigma | Liver: Vacuoles, pyknotic cells, and abnormal nucleus observed in hepatic cells | [124] |
Oreochromis niloticus | Weight gain and specific growth rate reduced | [221] |
Pangasianodon hypophthalmus | Blood cells: Different anomalies observed in erythrocytes |
[117] |
Anabas testudineus | Gill: Fused, hemorrhaged gill lamellae |
[222] |
Channa punctatus | Hemato-biochemical: Albumin, triglyceride, HDL, and VLDL levels in serum decreased | [223] |
Oryzias latipes | Reproduction: GSI and fecundity significantly lowered |
[123] |
Cu | ||
Cyprinus carpio | Significantly reduced the growth and feed utilization indices | [224] |
Channa gachua | Liver: Vacuoles in the cytoplasm and stroma, degenerated nuclei | [225] |
Poecilia reticulata | Reproduction: Poor reproductive performances, increased parturition period, highest mortality of larvae | [21] |
Oryzias melastigma | Improper skeletal structures, anomalies in the vascular system, lower pigmentation of embryo | [226] |
Leuciscus idus | Yolk sac malformation, lower body length, and perimeter, curve vertebrae | [26] |
Pb | ||
Myoxocephalus scorpius | Gill: Gill lamellae fused, hyperplastic epithelial cells, synechia, and telangiectasia |
[227] |
Mugil cephalus | Hemato-biochemical: Glucose and malondialdehyde levels in the blood increased | [228] |
Chanos chanos | Growth significantly reduced with the increase of Pb concentration | [183] |
Cyprinus carpio | Gill: Spiked and fused secondary lamellae, club-shaped filaments epithelium | [219] |
Carassius gibelio | Poor reproductive performance | [17] |
Labeo rohita | Hemato-biochemical: RBCs and Hct decreased while WBCs increased | [220] |
3. Bioremediation of Heavy Metal Toxicity in Fishes
Bioremediation is a convenient and ecofriendly option that can be used to restore the contaminated environment by removing toxic metals from the environment [224,229]. Bioremediation of toxicants can be done by adsorption [230,231,232], physio-biochemical mechanisms [233,234,235,236], and molecular mechanisms [237,238,239]. Several enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione S transferase, GST) and nonenzymatic compounds (reduced glutathione, GSH) play a key role in sustaining the ROS balance by detoxification (Figure 2). SOD has the capability to convert superoxide radicals to hydrogen peroxide radicals that transform into nontoxic oxygen and water through the activity of CAT enzymes [240]. On the other hand, GST detoxifies the toxicants by catalyzing electrophiles to GSH. Moreover, GSH converts into glutathione disulfide through the nonenzymatic oxidation of electrophilic compounds including free radicals and ROS [223].
Phytoremediation is a popular bioremediation technique in which various plants and microbes are used to reduce pollutants from the aquatic environment [4]. Microbial enzymes play a key role in converting toxic contaminants to safe ones by altering the chemical structure of contaminants. Some Lactobacillus spp. efficiently remediate heavy metals by converting the environment more acidic in nature [241,242] and through biosorption means or by forming bonds between heavy metals and their cell components [243]. Several mechanisms of microorganisms that make them resistant to heavy metals include extracellular sequestration [244,245], intracellular sequestration [246,247], reduction of heavy metal ions by the microbial cell [248], and extracellular barriers [249,250]. A wide range of microbes, such as bacteria, fungi, and algal species, have been used to detoxify heavy metals [251,252] and keep the environment clean; they are listed in Table 3. In addition to natural microbes, several genetically improved engineered microorganisms, especially surface-engineered microorganisms, were developed to use in the remediation process of target-specific heavy metals [253]. Several studies reported that the capabilities of genetically engineered microbes are greater than natural microbes for removing organic compounds, including heavy metals, under natural environmental systems [254,255]. Several engineering aspects, including single-gene edition, metabolic pathway modification, and alteration of gene sequences (coding and controlling), are successfully employed to modify the genetic makeup of microorganisms and transform them into engineered microorganisms [60], which more efficiently eliminates several heavy metals such as Ni, Hg, Cd, Fe, As, and Cu [256,257,258]. Additionally, the application of advanced engineering approaches (genomics, metagenomics, proteomics, metabolomics, and transcriptomics) has produced genetically modified microbes that play a crucial role in the bioremediation of several heavy metals [63,259]. The application of genetically modified Pseudomonas putida and Escherichia coli strain M109 has successfully removed Hg from contaminated sites [260]. The insertion of mer genes in Deinococcus geothemalis [4] and Cupriavidus metallidurans strain MSR33 [4,261] has been found to efficiently reduce Hg. Moreover, transporters in microbial membranes significantly improves the bioremediation of heavy metals from the environment [60,61]. It has been revealed that dietary Lactobacillus plantarum alleviated the toxicity caused by aluminum (Al) in tilapia [262]. The application of Spirulina platensis significantly alters the negative effects of As toxicity in Oryzias latipes [90]. Additionally, the provision of probiotics in the diet has been found to reverse the negative effects of Cd on the growth and hematology of Oreochromis niloticus [263]. However, EDTA significantly reduced the body Cd level and, thus, improved the blood profile of Clarias gariepinus [264]. Pomegranate peel and Lactococcus lactis have shown positive results in remediating toxicity resulting from Hg in C. gariepinus [265,266]. Probiotic supplementation (L. reuteri) was found to effectively alter the negative effects of Pb in Cyprinus carpio [182,267].
3.1. Application of Bacteria as Bioremediator
Bacteria play an important role due to having some special features such as their size, distribution, and capability to grow in controlled and resilient environments [268]. It has been reported that 70% and 75% Cd are removed by the application of P. aeruginosa and Alcaligenes faecalis, respectively [269], while Bacillus pumilus and Brevibacterium iodinium are able to remove Pb up to 87% and 88%, respectively. Another study revealed that B. cereus had the ability to remove 72% Cr [251]. Micrococcus luteus can remove a significant amount of Pb [270]. It has been stated that the highest quantity of Pb, Cr, and Cd were removed by B. megaterium, Aspergillus niger, and B. subtilis, respectively [271]. Desulfovibrio desulfuricans was found to effectively reduce 99.8% Cr, 98.2% Cu, and 90.1% Ni [252]. It has been reported that mixtures of several bacterial species efficiently removed Cr, Zn, Cd, Pb, Cu, and Co [272].
3.2. Application of Fungi as Bioremediator
Several fungal species with great capability of metal uptake and recovery are widely used to remediate toxic metals [273,274]. Several studies reported that both live and dead cells of fungal species actively adsorb metals [275,276]. It has been reported that Aspergillus sp. efficiently removed 85% of Cr [277]. It has been revealed that dead cells of Aspergillus niger, Rhizopus oryzae, Saccharomyces cerevisiae, and Penicillium chrysogenum are suitable for transforming toxic Cr into a less toxic form [278]. Another fungal species, Coprinopsis atramentaria, is considered an important metal accumulator [279]. Candida sphaerica was found to significantly reduce metal loads by creating biosurfactants [280,281]. Moreover, Hansenula polymorpha, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodotorula pilimanae, Pichia guilliermondii, and Rhodotorula mucilage were found to effectively convert toxic Cr to a less toxic state [282,283,284].
3.3. Application of Algae as Bioremediator
Algae have a high biosorption capacity and, hence, are used as biosorbents to remove toxic heavy metals [285]. Several algae and cyanobacterial species have the capability to either remove or degrade toxic metals [208]. This degradation of toxic metals by algae may be attributed to the high photosynthetic capacity of algae, resulting in the availability of significant amounts of dissolved oxygen in aquatic systems that caused an aerobic breakdown of several organic compounds, including heavy metals. Heavy metals, as well as other toxic compounds, may be degraded, detoxified, and transformed through several enzymatic and metabolic activities of algae in their metabolism [286]. Moreover, the algal cell wall is composed of several essential functional groups (fucoidan, alginate) that play a significant role in the removal of toxic heavy metals through a biosorption mechanism [287,288]. Additionally, algae can bind heavy metals through the employment of several binding approaches (extracellular and intracellular), including chelation, complexation, and physical adsorption to lessen the associated toxicity [289]. In addition, algae can play a very significant role in the detoxification of metals through their ability to synthesize class III metallothioneins (phytochelatins) that are synthesized by phytochelatin synthase enzymes that require post-translational activation by heavy metals [290,291,292]. The algal surface contains various chemical substances such as hydroxyl, carboxyl, phosphate, and amide that act as binding sites for the metals [293]. Death cells of another important algal species, Chlorella vulgaris, have been established as an efficient remover of Cd, Cu, and Pb [294].
Table 3Bioremediation of heavy metals toxicity in different fishes.
Species | Doses | Exposure Time (Days) | Bioremediation | References |
---|---|---|---|---|
Al | ||||
Oreochromis niloticus | Al (2.73 mg/L) | 28 | Increased Al level in organs and reduced RBCs, WBC, GB, HCT, MCV, MCH, SOD, GPx, CAT, TAO, and liver injured | [262] |
Al (2.73 mg/L) + L. plantarum (108 cfu/g) | Enhanced growth performance, |
|||
As | ||||
Oryzias latipes | As (7, 10 ppm) | 15 | Increased apoptotic, formation of MN, RBC, and DNA damage | [90] |
As (7, 10 ppm) + Spirulina platensis (200 mg/L) | Mitigated As toxicity and repaired DNA damage | |||
Pangasianodon hypophthalmus | As (2.68 mg/L) +T (34 °C) | 90 | Increased stress responses and |
[295] |
Se-NPs (0.5 mg/kg diet) + RF-(5/10/15 mg/kg) + As+ T | ||||
Enhanced growth performance, antioxidative status, immunity of the fish, and reduced stress biomarkers. | ||||
Cd | ||||
Oreochromis niloticus | Cd (0.3, 0.6 ppm) | 30 | Reduced length of testicular cell size | [229] |
Cd (0.3/0.6 ppm) |
Significantly increased length of testicular cell size | |||
Cd (0.3 /0.6 ppm) + |
Significantly increased length of testicular cell size | |||
Cd (0.3/0.6 ppm) + |
Significantly increased length of testicular cell size | |||
Oreochromis niloticus | Cd (5 mg/L) | 45 | Elevated levels of antioxidants gene transcript levels, GST-⍺1, GPx1, and MT caused oxicopathic lesion | [296] |
Cd (5 mg/L) + Vit-C (500 mg/kg) | Prevented the Cd-induced toxicopathic lesion and decreased hepatoxicity | |||
Oreochromis niloticus | Cd (1 mg/L) | 28 | Reduced growth rate, altered hemato-biochemical parameters, increased mortality, and reduced gut microbial diversity | [263] |
Cd (1 mg/L) + Lactobacillus plantarum (108 CFU/g) | Improved growth performance, decreased mortality, and Cd level reversed alteration of hemato-biochemical parameters in blood | |||
Oreochromis niloticus | Cd (10 ppm) | 15 and 45 | Reduced RBCs, Hb, Hct, MCH, and TP and increased ALT, ACP, AHT, and LP | [297] |
Cd (10 ppm) + EDTA (0.2 or 0.3 g/L) | Reduced Cd from the fish body and enhanced growth rate and hemato-biochemical parameters | |||
Clarias gariepinus | Cd (12 ppm) | 45 | Reduced RBCs, Hb, Hct, MCV, MCH, and MCHC | [264] |
Cd (12 ppm) + EDTA (0.3 mg/L) | Eliminated Cd from the fish |
|||
Carassius gibelio | Cd (10 ppm) | 21 | Increased Cd level in kidney and intestine and reduced Fe, Zn, and Cu | [298] |
Cd (10 ppm) + Zeolite (4 mg/L) | Reduced Cd level from organs and mitigated the antagonistic impact of Cd on some minerals such as Fe, Zn, and Cu | |||
Oreochromis niloticus | Cadmium (10 ppm) | 45 | Reduced RBCs, HB, HCt, MCH, and MCHC and increased MCV | [299] |
Cadmium (10 ppm)+ |
Regulated RBCs, HB HCt, MCV, MCH, and MCHC to normal level | |||
Oreochromis mossambicus | Cd (6 ppm) | 15 | Decreased RNA:DNA ratio and reduced growth | [155] |
Cd (6 ppm) + Zeolite (4.0 g/L) | Increased RNA:DNA ratio 6 to 10 times in liver, muscle, and gills and enhanced growth performance | |||
Ctenopharyngodon idella | Cd (5 mg/L) | 15 | Increased Cd level and caused structural damage in the organs | [300] |
Cd (5 mg/L) + L. gibba L (1 g/L) | Decreased Cd residue in liver |
|||
Cd (5 mg/L) + S. platensis (5 mg/L) | Significantly decreased Cd residue in liver and muscle | |||
Cd (5 mg/L) + L. gibba (1 g/L) + S. platensis (5 mg/L) | Remediated the degenerative action of Cd in fish | |||
Cu | ||||
Cyprinus carpio | Cu (0.1 mg/L) | 14 | Increased Cu level in fish | [224] |
Cu (0.1 mg/L) + Stenotrophomonas maltophilia (108 cfu/mL) | Greatly reduced Cu accumulation from fish | |||
Oreochromis mossambicus | Cu (2.14 or 4.27 mg/L) | 180 | Increased Cu level in fish tissue | [301] |
Cu (2.14 mg/L) + Zeolite (2 g/L) | Removed Cu content from fish | |||
Oreochromis mossambicu | Cu (4.27 ppm) | 28 | Reduced RBCs, Hb, and Ht value, O2 carrying capacity of the blood and increased TLC and ESR | [302] |
Cu (4.27 ppm) + EDTA (0.125/0.25/0.50/1.0) g/L | Increased RBCs, HB, and HCt value and greatly reduced Cu accumulation | |||
Hg | ||||
Clarias gariepinus | Hg (0.13 ppm) | 60 | Increased AST, ALT, urea, and creatinine levels and reduced |
[265] |
Hg (0.13 ppm) + PPW (0.3 g/L) | Reduced urea and creatinine levels | |||
Hg (0.13 ppm) + PPD (1 or 2 g/L) | Increased RBCs, Hb, PCV, lysozyme, and antiprotease |
|||
Hg (0.13 ppm) | 60 | Reduced RBCs, Hb, WBC, globulin, GSH, and MDA | [266] | |
Hg (0.13 ppm) + Lactococcus |
Increased RBC, WBC, lysozyme, antiprotease activity, nitric-oxide, GSH, MDA, TP, albumin, and globulin | |||
Oreochromius niloticus
|
Hg (75 μg/L) | 15 | Reduced RBC, Hb, Hct, AST, |
[303] |
Hg (75 μg/L) + |
Reduced Hg level and improved the hematological parameters (RBCs, Hb, and Hct) | |||
Ni | ||||
Cyprinus carpio | Ni (1.0 mg/L) | 14 | Enhanced Ni concentration in fish | [224] |
Ni (1.0 mg/L) + Stenotrophomonas maltophilia (108 cfu/mL) | Greatly reduced Ni level from fish | |||
Pb | ||||
Cyprinus carpio | Pb (50 or 100 mg/L) |
Exhibited the best Pb-binding ability, thus removing Pb level | [267] | |
Cyprinus carpio | Pb (1 mg/L) | 42 | Increased mortality and decreased growth rate, RBCs, WBC | [182] |
Pb (1 mg/L) + L. reuteri (108 cfu/g) | Reduced mortality and Pb accumulation and improved growth performance, and immune response of fish | |||
Oreochromis niloticus | Pb (10 mg/kg) | 60 | Reduced GH Level and growth performance | [304] |
Pb (10 mg/kg) + VE (300 mg/kg) | Reduced Pb accumulation in tissue and significantly increased serum GH level | |||
Oreochromis niloticus | Pb (81.53 mg/kg) | 70 | Reduced PCV, RBCs, WBC, and lymphocytes and increased lipid peroxidation level (malondialdehyde) | [305] |
Pb (81.53 mg/kg) + Vitamin-E (200 mg/kg) + Selenium (40 mg/kg) | Increased blood parameters prevented cell damage by reducing malondialdehyde | |||
Cyprinus carpio | Pb (0.017 mg/L) | 5 | Caused lipid peroxidation and altered antioxidant enzymes SOD, CAT, proteins, glucose, glycogen, and amino acids in organs | [306] |
Pb (0.017 mg/L) + Spirulina (500 mg/fish) | Reduced Pb toxicity and enhanced SOD, and CAT activity in the liver and gills, thereby diminishing lipid peroxidation | |||
Oreochromis niloticus | Pb (1 mg/L) | 28 | Reduced Final BW, ADG, SGR, and GSH and increased FCR and NAs | [181] |
Pb (1 mg/L) + |
Increased growth performance and reduced NAs, mortality rate, and Pb level in fish organs | |||
Heteropneusts fossilis | Pb (10 mg/L) | 180 | Reduced protein content in all tissue | [307] |
Pb (10 mg/L) + Chabazite (10 mg/L) | Increased protein content, thus improving fish quality | |||
Metal (Zn +Pb + Cd + Cu) | ||||
Oreochromis niloticus | M (Cd + Cu + Pb + Zn) (5 mg/L) | 5 and 7 | Increased frequencies of MN, BN, other NAs, and MAE and altered erythrocytes | [308] |
M (5 mg/L) + Se (75 μg/kg) + Vit-A + E+C (300 μg + 10 mg + 60 mg/kg) | Reduced NAs and MAE, thus aiding in cell division in fish |
P—probiotic, RBC–red blood cell, WBC—white blood cell, Hb—hemoglobin, HCt—hematocrit, PCV—packed cell volume, MCV—mean corpuscular volume, MCH—mean cell hemoglobin, AST—aspartate amino transferase, ALT—alanine amino transferase, MCHC—mean cell hemoglobin concentration, MN—micronuclei, GB—globulin, LP—total lipid, TP—total protein, FCR—feed conversion ratio, NAs—nuclear abnormalities, MAE—morphologically altered erythrocytes, SGR—specific growth rate, BW—body weight, BN—binuclear, SOD—superoxide dismutase, CAT—catalase, GPx—glutathione peroxidase, TLC—total leucocyte count, ESR—erythrocyte sedimentation rate, GSH—glutathione, MDA—malondialdehyde, TAO—total antioxidant, ADG—average daily gain, ALP—alkaline phosphatase, MT—metallothionein, GST-α1—glutathione S-transferase, GH—growth hormone, Se-NPs—selenium nanoparticles, and RF—Riboflavin.
4. Conclusions and Recommendations
The discharge of toxic heavy metals without proper treatment from various industries is adversely deteriorating aquatic ecosystems. As a result, toxic heavy metals from this contaminated environment have bioaccumulated in several important organs of fish and disturbed their normal functions. The bioaccumulation of these toxic metals has severely affected the normal physiology of fish, reducing the growth and reproduction of fish. Bioremediation has great potentiality to reshape the existing contaminations of aquatic systems in a sustainable approach. Additionally, bioremediation improves fish health by altering the toxic effects of several heavy metals. It is not only beneficial for aquatic organisms but also improves the productivity of aquatic ecosystems. By efficient application of this bioremediation process, we can significantly recycle the water that reduces wastage of water, and degradation of organic matter lowers the pathogenic organisms that enhance the biosecurity of our ecosystems. In parallel with the current practices of bioremediation, genetically engineered microorganisms (GEM) should be introduced in the future to increase the efficiency of bioremediation techniques to mitigate adverse heavy metal contamination. In this case, public acceptance of GEM and the safety of the environment should be taken into consideration.
F.J.E. and M.F.R. prepared the tables and first draft of the manuscript. N.S. and M.F.T.J. assisted in the preparation of the tables. Y.A., K.W.G., A.B.T. and Z.A.K. edited the manuscript. M.S. conceptualized and edited the manuscript. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
The data that support the outcomes of this study are available on request from the corresponding author [M.S.].
This review article is a collaboration between Bangladesh Agricultural University, the Advanced Livestock and Aquaculture Research Group—ALAReG under Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, and INTI International University.
The authors declared no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 1. Routes of heavy metal accumulation in fish; ROS, reactive oxygen species.
Figure 2. Heavy metals detoxification mechanism; SOD, superoxide dismutase; CAT, catalase; GST, glutathione S transferase; GSH, glutathione; GSSG, glutathione disulphide; ROS, reactive oxygen species.
References
1. Suchana, S.A.; Ahmed, M.S.; Islam, S.M.; Rahman, M.L.; Rohani, M.F.; Ferdusi, T.; Ahmmad, A.S.; Fatema, M.K.; Badruzzaman, M.; Shahjahan, M. Chromium Exposure Causes Structural Aberrations of Erythrocytes, Gills, Liver, Kidney, and Genetic Damage in Striped Catfish Pangasianodon hypophthalmus. Biol. Trace Elem. Res.; 2021; 199, pp. 3869-3885. [DOI: https://dx.doi.org/10.1007/s12011-020-02490-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33206307]
2. Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of Heavy Metals on Fish Physiology—A Review. Chemosphere; 2022; 300, 134519. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2022.134519]
3. Taslima, K.; Al-Emran, M.; Rahman, M.S.; Hasan, J.; Ferdous, Z.; Rohani, M.F.; Shahjahan, M. Impacts of Heavy Metals on Early Development, Growth and Reproduction of Fish—A Review. Toxicol. Rep.; 2022; 9, pp. 858-868. [DOI: https://dx.doi.org/10.1016/j.toxrep.2022.04.013]
4. Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability; 2015; 7, pp. 2189-2212. [DOI: https://dx.doi.org/10.3390/su7022189]
5. Singare, P.U.; Dhabarde, S.S. Toxic Metals Pollution Due to Industrial Effluents Released along Dombivali Industrial Belt of Mumbai, India. Eur. J. Environ. Saf. Sci. Eur. Sci. Res. Inst.; 2014; 2, pp. 5-11.
6. Sarkar, M.M.; Rohani, M.F.; Hossain, M.A.R.; Shahjahan, M. Evaluation of Heavy Metal Contamination in Some Selected Commercial Fish Feeds Used in Bangladesh. Biol. Trace Elem. Res.; 2022; 200, pp. 844-854. [DOI: https://dx.doi.org/10.1007/s12011-021-02692-4]
7. Sarkar, T.; Alam, M.M.; Parvin, N.; Fardous, Z.; Chowdhury, A.Z.; Hossain, S.; Haque, M.E.; Biswas, N. Assessment of Heavy Metals Contamination and Human Health Risk in Shrimp Collected from Different Farms and Rivers at Khulna-Satkhira Region, Bangladesh. Toxicol. Rep.; 2016; 3, pp. 346-350. [DOI: https://dx.doi.org/10.1016/j.toxrep.2016.03.003]
8. Ezemonye, L.I.; Adebayo, P.O.; Enuneku, A.A.; Tongo, I.; Ogbomida, E. Potential Health Risk Consequences of Heavy Metal Concentrations in Surface Water, Shrimp (Macrobrachium macrobrachion) and Fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicol. Rep.; 2019; 6, pp. 1-9. [DOI: https://dx.doi.org/10.1016/j.toxrep.2018.11.010]
9. Authman, M.M. Use of Fish as Bio-Indicator of the Effects of Heavy Metals Pollution. J. Aquac. Res. Dev.; 2015; 6, pp. 1-13. [DOI: https://dx.doi.org/10.4172/2155-9546.1000328]
10. Malik, D.S.; Maurya, P.K. Heavy Metal Concentration in Water, Sediment, and Tissues of Fish Species (Heteropneustis fossilis and Puntius ticto) from Kali River, India. Toxicol. Environ. Chem.; 2014; 96, pp. 1195-1206. [DOI: https://dx.doi.org/10.1080/02772248.2015.1015296]
11. Ngo, H.T.T.; Gerstmann, S.; Frank, H. Subchronic Effects of Environment-like Cadmium Levels on the Bivalve Anodonta anatina (Linnaeus 1758): III. Effects on Carbonic Anhydrase Activity in Relation to Calcium Metabolism. Toxicol. Environ. Chem.; 2011; 93, pp. 1815-1825. [DOI: https://dx.doi.org/10.1080/02772240802503619]
12. Youssef, D.H.; Tayel, F.T. Metal Accumulation by Three Tilapia Spp. From Some Egyptian Inland Waters. Chem. Ecol.; 2004; 20, pp. 61-71. [DOI: https://dx.doi.org/10.1080/02757540310001642689]
13. Baatrup, E. Structural and Functional Effects of Heavy Metals on the Nervous System, Including Sense Organs, of Fish. Comp. Biochem. Physiol. Part C Comp.; 1991; 100, pp. 253-257. [DOI: https://dx.doi.org/10.1016/0742-8413(91)90163-N]
14. Farombi, E.O.; Adelowo, O.A.; Ajimoko, Y.R. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health; 2007; 4, pp. 158-165. [DOI: https://dx.doi.org/10.3390/ijerph2007040011]
15. Abdel-Baki, A.S.; Dkhil, M.A.; Al-Quraishy, S. Patterns of Cephalic Indexes in Three West African Populations. African J. Biotechnol.; 2011; 10, pp. 2541-2547. [DOI: https://dx.doi.org/10.13227/j.hjkx.201810199]
16. Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W. et al. Impacts of Soil and Water Pollution on Food Safety and Health Risks in China. Environ. Int.; 2015; 77, pp. 5-15. [DOI: https://dx.doi.org/10.1016/j.envint.2014.12.010]
17. Łuszczek-Trojnar, E.; Drag-Kozak, E.; Szczerbik, P.; Socha, M.; Popek, W. Effect of Long-Term Dietary Lead Exposure on Some Maturation and Reproductive Parameters of a Female Prussian Carp (Carassius gibelio B.). Environ. Sci. Pollut. Res.; 2014; 21, pp. 2465-2478. [DOI: https://dx.doi.org/10.1007/s11356-013-2184-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24078275]
18. Santos, G.S.; Neumann, G.; do Nascimento, C.Z.; Domingues, C.E.; Campos, S.X.; Bombardelli, R.A.; Cestari, M.M. Exposure of Male Tilapia (Oreochromis niloticus) to Copper by Intraperitoneal Injection: DNA Damage and Larval Impairment. Aquat. Toxicol.; 2018; 205, pp. 123-129. [DOI: https://dx.doi.org/10.1016/j.aquatox.2018.10.010]
19. Gárriz, Á.; del Fresno, P.S.; Carriquiriborde, P.; Miranda, L.A. Effects of Heavy Metals Identified in Chascomús Shallow Lake on the Endocrine-Reproductive Axis of Pejerrey Fish (Odontesthes bonariensis). Gen. Comp. Endocrinol.; 2019; 273, pp. 152-162. [DOI: https://dx.doi.org/10.1016/j.ygcen.2018.06.013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29940183]
20. Yan, W.; Hamid, N.; Deng, S.; Jia, P.P.; Pei, D.S. Individual and Combined Toxicogenetic Effects of Microplastics and Heavy Metals (Cd, Pb, and Zn) Perturb Gut Microbiota Homeostasis and Gonadal Development in Marine Medaka (Oryzias melastigma). J. Hazard. Mater.; 2020; 397, 122795. [DOI: https://dx.doi.org/10.1016/j.jhazmat.2020.122795] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32388101]
21. Forouhar Vajargah, M.; Mohamadi Yalsuyi, A.; Sattari, M.; Prokić, M.D.; Faggio, C. Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish. Poecilia reticulata. J. Clust. Sci.; 2020; 31, pp. 499-506. [DOI: https://dx.doi.org/10.1007/s10876-019-01664-y]
22. Gupta, G.; Srivastava, P.P.; Kumar, M.; Varghese, T.; Chanu, T.I.; Gupta, S.; Ande, M.P.; Jana, P. The Modulation Effects of Dietary Zinc on Reproductive Performance and Gonadotropins’ (FSH and LH) Expression in Threatened Asian Catfish, Clarias magur (Hamilton, 1822) Broodfish. Aquac. Res.; 2021; 52, pp. 2254-2265. [DOI: https://dx.doi.org/10.1111/are.15077]
23. Cao, L.; Huang, W.; Shan, X.; Xiao, Z.; Wang, Q.; Dou, S. Cadmium Toxicity to Embryonic-Larval Development and Survival in Red Sea Bream Pagrus major. Ecotoxicol. Environ. Saf.; 2009; 72, pp. 1966-1974. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2009.06.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19573918]
24. Huang, W.; Cao, L.; Shan, X.; Xiao, Z.; Wang, Q.; Dou, S. Toxic Effects of Zinc on the Development, Growth, and Survival of Red Sea Bream Pagrus major Embryos and Larvae. Arch. Environ. Contam. Toxicol.; 2010; 58, pp. 140-150. [DOI: https://dx.doi.org/10.1007/s00244-009-9348-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19504147]
25. Zhang, H.; Cao, H.; Meng, Y.; Jin, G.; Zhu, M. The Toxicity of Cadmium (Cd2+) towards Embryos and pro-Larva of Soldatov’s Catfish (Silurus soldatovi). Ecotoxicol. Environ. Saf.; 2012; 80, pp. 258-265. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2012.03.013]
26. Witeska, M.; Sarnowski, P.; Ługowska, K.; Kowal, E. The Effects of Cadmium and Copper on Embryonic and Larval Development of Ide Leuciscus idus L. Fish Physiol. Biochem.; 2014; 40, pp. 151-163. [DOI: https://dx.doi.org/10.1007/s10695-013-9832-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23884542]
27. Rohani, M.F.; Bristy, A.A.; Hasan, J.; Hossain, M.K.; Shahjahan, M. Dietary Zinc in Association with Vitamin E Promotes Growth Performance of Nile Tilapia. Biol. Trace Elem. Res.; 2022; 200, pp. 4150-4159. [DOI: https://dx.doi.org/10.1007/s12011-021-03001-9]
28. Akter, S.; Jahan, N.; Rohani, M.F.; Akter, Y.; Shahjahan, M. Chromium Supplementation in Diet Enhances Growth and Feed Utilization of Striped Catfish (Pangasianodon hypophthalmus). Biol. Trace Elem. Res.; 2021; 199, pp. 4811-4819. [DOI: https://dx.doi.org/10.1007/s12011-021-02608-2]
29. Lakherwal, D. Adsorption of Heavy Metals-a Review. Mater. Today Proc.; 2019; 18, pp. 4745-4750. [DOI: https://dx.doi.org/10.1016/j.matpr.2019.07.462]
30. Siddiquee, S.; Rovina, K.; Azad, S. Al Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review. J. Microb. Biochem. Technol.; 2015; 7, pp. 384-395. [DOI: https://dx.doi.org/10.4172/1948-5948.1000243]
31. Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary Intake of Heavy Metals from Eight Highly Consumed Species of Cultured Fish and Possible Human Health Risk Implications in Bangladesh. Toxicol. Rep.; 2017; 4, pp. 574-579. [DOI: https://dx.doi.org/10.1016/j.toxrep.2017.10.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29152462]
32. Rajeshkumar, S.; Li, X. Bioaccumulation of Heavy Metals in Fish Species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep.; 2018; 5, pp. 288-295. [DOI: https://dx.doi.org/10.1016/j.toxrep.2018.01.007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29511642]
33. Maurya, P.K.; Malik, D.S.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H. Bioaccumulation and Potential Sources of Heavy Metal Contamination in Fish Species in River Ganga Basin: Possible Human Health Risks Evaluation. Toxicol. Rep.; 2019; 6, pp. 472-481. [DOI: https://dx.doi.org/10.1016/j.toxrep.2019.05.012]
34. Kortei, N.K.; Heymann, M.E.; Essuman, E.K.; Kpodo, F.M.; Akonor, P.T.; Lokpo, S.Y.; Boadi, N.O.; Ayim-Akonor, M.; Tettey, C. Health Risk Assessment and Levels of Toxic Metals in Fishes (Oreochromis niloticus and Clarias anguillaris) from Ankobrah and Pra Basins: Impact of Illegal Mining Activities on Food Safety. Toxicol. Rep.; 2020; 7, pp. 360-369. [DOI: https://dx.doi.org/10.1016/j.toxrep.2020.02.011]
35. Ahluwalia, S.S.; Goyal, D. Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater. Bioresour. Technol.; 2007; 98, pp. 2243-2257. [DOI: https://dx.doi.org/10.1016/j.biortech.2005.12.006]
36. Hussein, H.; Moawad, H.; Farag, S. Isolation and Characterization of Pseudomonas Resistant to Heavy Metals Contaminants. Arab. J. Biotech.; 2004; 7, pp. 13-22.
37. Krishnani, K.K.; Shekhar, M.S.; Gopikrishna, G.; Gupta, B.P. Sequence Similarity Based Identification of Nitrifying Bacteria in Coastal Aquaculture for Bioremediation Predictability. Asian Fish. Sci.; 2009; 22, pp. 41-49. [DOI: https://dx.doi.org/10.33997/j.afs.2009.22.1.005]
38. Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol.; 2018; 2018, pp. 1-16. [DOI: https://dx.doi.org/10.1155/2018/2568038]
39. Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A Review of Approaches and Techniques Used in Aquatic Contaminated Sediments: Metal Removal and Stabilization by Chemical and Biotechnological Processes. J. Clean. Prod.; 2015; 86, pp. 24-36. [DOI: https://dx.doi.org/10.1016/j.jclepro.2014.08.009]
40. Ndeddy Aka, R.J.; Babalola, O.O. Effect of Bacterial Inoculation of Strains of Pseudomonas Aeruginosa, Alcaligenes Feacalis and Bacillus Subtilis on Germination, Growth and Heavy Metal (Cd, Cr, and Ni) Uptake of Brassica juncea. Int. J. Phytoremediat.; 2016; 18, pp. 200-209. [DOI: https://dx.doi.org/10.1080/15226514.2015.1073671]
41. Okoduwa, S.I.R.; Igiri, B.; Udeh, C.B.; Edenta, C.; Gauje, B. Tannery Effluent Treatment by Yeast Species Isolates from Watermelon. Toxics; 2017; 5, 6. [DOI: https://dx.doi.org/10.3390/toxics5010006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29051437]
42. Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial Role of Bacterial Endophytes in Heavy Metal Phytoremediation. J. Environ. Manage.; 2016; 174, pp. 14-25. [DOI: https://dx.doi.org/10.1016/j.jenvman.2016.02.047]
43. Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling Plant-Microbe Interactions: Can Multi-Species Transcriptomics Help?. Trends Biotechnol.; 2012; 30, pp. 177-184. [DOI: https://dx.doi.org/10.1016/j.tibtech.2011.11.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22209623]
44. Hennebel, T.; Boon, N.; Maes, S.; Lenz, M. Biotechnologies for Critical Raw Material Recovery from Primary and Secondary Sources: R&D Priorities and Future Perspectives. N. Biotechnol.; 2015; 32, pp. 121-127. [DOI: https://dx.doi.org/10.1016/j.nbt.2013.08.004] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23994422]
45. Le, T.T.; Son, M.H.; Nam, I.H.; Yoon, H.; Kang, Y.G.; Chang, Y.S. Transformation of Hexabromocyclododecane in Contaminated Soil in Association with Microbial Diversity. J. Hazard. Mater.; 2017; 325, pp. 82-89. [DOI: https://dx.doi.org/10.1016/j.jhazmat.2016.11.058]
46. Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C.-G. Bacteria as Workers in the Living Factory. Trends Biotechnol.; 2001; 19, pp. 15-20. [DOI: https://dx.doi.org/10.1016/S0167-7799(00)01514-6]
47. Varma, R.S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng.; 2012; 1, pp. 123-128. [DOI: https://dx.doi.org/10.1016/j.coche.2011.12.002]
48. Varma, R.S. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis and Environmental Remediation. Green Chem.; 2014; 16, pp. 2027-2041. [DOI: https://dx.doi.org/10.1039/c3gc42640h]
49. Varma, R.S. Greener and Sustainable Chemistry. Appl. Sci.; 2014; 4, pp. 493-497. [DOI: https://dx.doi.org/10.3390/app4040493]
50. Varma, R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng.; 2016; 4, pp. 5866-5878. [DOI: https://dx.doi.org/10.1021/acssuschemeng.6b01623]
51. Varma, R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng.; 2019; 7, pp. 6458-6470. [DOI: https://dx.doi.org/10.1021/acssuschemeng.8b06550]
52. Goutam, S.P.; Saxena, G.; Roy, D.; Yadav, A.K.; Bharagava, R.N. Green Synthesis of Nanoparticles and Their Applications in Water and Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9789811318917
53. Paliwal, V.; Puranik, S.; Purohit, H.J. Integrated Perspective for Effective Bioremediation. Appl. Biochem. Biotechnol.; 2012; 166, pp. 903-924. [DOI: https://dx.doi.org/10.1007/s12010-011-9479-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22198863]
54. Poirier, I.; Hammann, P.; Kuhn, L.; Bertrand, M. Strategies Developed by the Marine Bacterium Pseudomonas Fluorescens BA3SM1 to Resist Metals: A Proteome Analysis. Aquat. Toxicol.; 2013; 128–129, pp. 215-232. [DOI: https://dx.doi.org/10.1016/j.aquatox.2012.12.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23314334]
55. Lukić, B.; Huguenot, D.; Panico, A.; Fabbricino, M.; van Hullebusch, E.D.; Esposito, G. Importance of Organic Amendment Characteristics on Bioremediation of PAH-Contaminated Soil. Environ. Sci. Pollut. Res.; 2016; 23, pp. 15041-15052. [DOI: https://dx.doi.org/10.1007/s11356-016-6635-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27083907]
56. Kästner, M.; Miltner, A. Application of Compost for Effective Bioremediation of Organic Contaminants and Pollutants in Soil. Appl. Microbiol. Biotechnol.; 2016; 100, pp. 3433-3449. [DOI: https://dx.doi.org/10.1007/s00253-016-7378-y]
57. Wiszniewska, A.; Hanus-Fajerska, E.; MuszyŃska, E.; Ciarkowska, K. Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere; 2016; 26, pp. 1-12. [DOI: https://dx.doi.org/10.1016/S1002-0160(15)60017-0]
58. Ali, H.; Rico, A.; Murshed-e-Jahan, K.; Belton, B. An Assessment of Chemical and Biological Product Use in Aquaculture in Bangladesh; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 454, ISBN 8801712308
59. Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of Hydrophobic Organic Pollutants from Soil Washing/Flushing Solutions: A Critical Review. J. Hazard. Mater.; 2016; 306, pp. 149-174. [DOI: https://dx.doi.org/10.1016/j.jhazmat.2015.12.008]
60. Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol.; 2018; 6, 157. [DOI: https://dx.doi.org/10.3389/fbioe.2018.00157]
61. Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the Molecular Mechanisms for the Enhanced Phytoremediation of Heavy Metals through Plant Growth Promoting Rhizobacteria: A Review. J. Environ. Manage.; 2020; 254, 109779. [DOI: https://dx.doi.org/10.1016/j.jenvman.2019.109779]
62. Pande, V.; Pandey, S.C.; Sati, D.; Pande, V.; Samant, M. Bioremediation: An Emerging Effective Approach towards Environment Restoration. Environ. Sustain.; 2020; 3, pp. 91-103. [DOI: https://dx.doi.org/10.1007/s42398-020-00099-w]
63. Sayqal, A.; Ahmed, O.B. Advances in Heavy Metal Bioremediation: An Overview. Appl. Bionics Biomech.; 2021; 2021, pp. 1-8. [DOI: https://dx.doi.org/10.1155/2021/1609149]
64. Khati, P.; Sharma, A.; Gangola, S.; Kumar, R.; Bhatt, P.; Kumar, G. Impact of Agri-Usable Nanocompounds on Soil Microbial Activity: An Indicator of Soil Health. Clean-Soil Air Water; 2017; 45, 1600458. [DOI: https://dx.doi.org/10.1002/clen.201600458]
65. Devatha, C.P.; Jagadeesh, K.; Patil, M. Effect of Green Synthesized Iron Nanoparticles by Azardirachta Indica in Different Proportions on Antibacterial Activity. Environ. Nanotechnol. Monit. Manag.; 2018; 9, pp. 85-94. [DOI: https://dx.doi.org/10.1016/j.enmm.2017.11.007]
66. Alviz-Gazitua, P.; Fuentes-Alburquenque, S.; Rojas, L.A.; Turner, R.J.; Guiliani, N.; Seeger, M. The Response of Cupriavidus Metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-Di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Front. Microbiol.; 2019; 10, pp. 1-17. [DOI: https://dx.doi.org/10.3389/fmicb.2019.01499]
67. Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M.A. Polyethylenimine Modified Graphene Oxide Hydrogel Composite as an Efficient Adsorbent for Heavy Metal Ions. Sep. Purif. Technol.; 2019; 209, pp. 870-880. [DOI: https://dx.doi.org/10.1016/j.seppur.2018.06.035]
68. Velma, V.; Vutukuru, S.S.; Tchounwou, P.B. Ecotoxicology of Hexavalent Chromium in Freshwater Fish: A Critical Review. Rev. Environ. Health; 2009; 24, pp. 129-145. [DOI: https://dx.doi.org/10.1515/REVEH.2009.24.2.129] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19658319]
69. Fernandes, C.; Fontaínhas-Fernandes, A.; Cabral, D.; Salgado, M.A. Heavy Metals in Water, Sediment and Tissues of Liza saliens from Esmoriz-Paramos Lagoon, Portugal. Environ. Monit. Assess.; 2008; 136, pp. 267-275. [DOI: https://dx.doi.org/10.1007/s10661-007-9682-6]
70. Al-Busaidi, M.; Yesudhason, P.; Al-Mughairi, S.; Al-Rahbi, W.A.K.; Al-Harthy, K.S.; Al-Mazrooei, N.A.; Al-Habsi, S.H. Toxic Metals in Commercial Marine Fish in Oman with Reference to National and International Standards. Chemosphere; 2011; 85, pp. 67-73. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2011.05.057]
71. El-Moselhy, K.M.; Othman, A.I.; Abd El-Azem, H.; El-Metwally, M.E.A. Bioaccumulation of Heavy Metals in Some Tissues of Fish in the Red Sea, Egypt. Egypt. J. Basic Appl. Sci.; 2014; 1, pp. 97-105. [DOI: https://dx.doi.org/10.1016/j.ejbas.2014.06.001]
72. Mokarram, M.; Saber, A.; Sheykhi, V. Effects of Heavy Metal Contamination on River Water Quality Due to Release of Industrial Effluents. J. Clean. Prod.; 2020; 277, 123380. [DOI: https://dx.doi.org/10.1016/j.jclepro.2020.123380]
73. Yu, B.; Wang, X.; Dong, K.F.; Xiao, G.; Ma, D. Heavy Metal Concentrations in Aquatic Organisms (Fishes, Shrimp and Crabs) and Health Risk Assessment in China. Mar. Pollut. Bull.; 2020; 159, 111505. [DOI: https://dx.doi.org/10.1016/j.marpolbul.2020.111505]
74. Garelic, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic Pollution Sources. Rev. Environ. Contam.; 2009; 197, pp. 17-60. [DOI: https://dx.doi.org/10.1007/978-O-387-79284-2_2]
75. Suhendrayatna,; Ohki, A.; Nakajima, T.; Maeda, S. Studies on the Accumulation and Transformation of Arsenic in Freshwater Organisms II. Accumulation and Transformation of Arsenic Compounds by Tilapia mossambica. Chemosphere; 2002; 46, pp. 325-331. [DOI: https://dx.doi.org/10.1016/S0045-6535(01)00085-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11827292]
76. Hayati, A.; Giarti, K.; Winarsih, Y.; Amin, M.H.F. The Effect of Cadmium on Sperm Quality and Fertilization Of Cyprinus carpio L. J. Trop. Biodivers. Biotechnol.; 2017; 2, 45. [DOI: https://dx.doi.org/10.22146/jtbb.26744]
77. Zhang, W.; Chen, L.; Zhou, Y.; Wu, Y.; Zhang, L. Biotransformation of Inorganic Arsenic in a Marine Herbivorous Fish Siganus Fuscescens after Dietborne Exposure. Chemosphere; 2016; 147, pp. 297-304. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2015.12.121]
78. Pei, J.; Zuo, J.; Wang, X.; Yin, J.; Liu, L.; Fan, W. The Bioaccumulation and Tissue Distribution of Arsenic Species in Tilapia. Int. J. Environ. Res. Public Health; 2019; 16, 757. [DOI: https://dx.doi.org/10.3390/ijerph16050757]
79. Baker, D.E.; Chesnin, L. Chemical Monitoring of Soils for Environmental Quality and Animal and Human Health. Adv. Agron.; 2002; 27, pp. 305-374. [DOI: https://dx.doi.org/10.1016/S0065-2113(08)70013-0]
80. Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human Health Effects from Chronic Arsenic Poisoning—A Review. J. Environ. Sci. Health-Part A Toxic/Hazard. Subst. Environ. Eng.; 2006; 41, pp. 2399-2428. [DOI: https://dx.doi.org/10.1080/10934520600873571] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17018421]
81. Erickson, R.J.; Mount, D.R.; Highland, T.L.; Russell Hockett, J.; Jenson, C.T. The Relative Importance of Waterborne and Dietborne Arsenic Exposure on Survival and Growth of Juvenile Rainbow Trout. Aquat. Toxicol.; 2011; 104, pp. 108-115. [DOI: https://dx.doi.org/10.1016/j.aquatox.2011.04.003]
82. Sayed, A.E.D.H.; Elbaghdady, H.A.M.; Zahran, E. Arsenic-Induced Genotoxicity in Nile Tilapia (Orechromis niloticus); The Role of Spirulina Platensis Extract. Environ. Monit. Assess.; 2015; 187, pp. 1-10. [DOI: https://dx.doi.org/10.1007/s10661-015-4983-7]
83. Kumari, B.; Kumar, V.; Sinha, A.K.; Ahsan, J.; Ghosh, A.K.; Wang, H.; DeBoeck, G. Toxicology of Arsenic in Fish and Aquatic Systems. Environ. Chem. Lett.; 2017; 15, pp. 43-64. [DOI: https://dx.doi.org/10.1007/s10311-016-0588-9]
84. Ghosh, D.; Bhattacharya, S.; Mazumder, S. Perturbations in the Catfish Immune Responses by Arsenic: Organ and Cell Specific Effects. Comp. Biochem. Physiol.-C Toxicol. Pharmacol.; 2006; 143, pp. 455-463. [DOI: https://dx.doi.org/10.1016/j.cbpc.2006.04.010]
85. Nayak, A.S.; Lage, C.R.; Kim, C.H. Effects of Low Concentrations of Arsenic on the Innate Immune System of the Zebrafish (Danio rerio). Toxicol. Sci.; 2007; 98, pp. 118-124. [DOI: https://dx.doi.org/10.1093/toxsci/kfm072]
86. Datta, S.; Ghosh, D.; Saha, D.R.; Bhattacharaya, S.; Mazumder, S. Chronic Exposure to Low Concentration of Arsenic Is Immunotoxic to Fish: Role of Head Kidney Macrophages as Biomarkers of Arsenic Toxicity to Clarias batrachus. Aquat. Toxicol.; 2009; 92, pp. 86-94. [DOI: https://dx.doi.org/10.1016/j.aquatox.2009.01.002]
87. Fazio, F.; Saoca, C.; Ferrantelli, V.; Cammilleri, G.; Capillo, G.; Piccione, G. Relationship between Arsenic Accumulation in Tissues and Hematological Parameters in Mullet Caught in Faro Lake: A Preliminary Study. Environ. Sci. Pollut. Res.; 2019; 26, pp. 8821-8827. [DOI: https://dx.doi.org/10.1007/s11356-019-04343-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30712206]
88. Akter, M.S. Acute Toxicity of Arsenic and Mercury to Fresh Water Climbing Perch, Anabas testudineus (Bloch). World J. Zool.; 2008; 3, pp. 13-18.
89. Baldissarelli, L.A.; Capiotti, K.M.; Bogo, M.R.; Ghisleni, G.; Bonan, C.D. Arsenic Alters Behavioral Parameters and Brain Ectonucleotidases Activities in Zebrafish (Danio rerio). Comp. Biochem. Physiol.-C Toxicol. Pharmacol.; 2012; 155, pp. 566-572. [DOI: https://dx.doi.org/10.1016/j.cbpc.2012.01.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22265774]
90. Sayed, A.H.; Kitamura, D.; Oda, S.; Kashiwada, S.; Mitani, H. Cytotoxic and Genotoxic Effects of Arsenic on Erythrocytes of Oryzias latipes: Bioremediation Using Spirulina Platensis. J. Trace Elem. Med. Biol.; 2019; 55, pp. 82-88. [DOI: https://dx.doi.org/10.1016/j.jtemb.2019.06.007]
91. Yamaguchi, S.; Miura, C.; Ito, A.; Agusa, T.; Iwata, H.; Tanabe, S.; Tuyen, B.C.; Miura, T. Effects of Lead, Molybdenum, Rubidium, Arsenic and Organochlorines on Spermatogenesis in Fish: Monitoring at Mekong Delta Area and in Vitro Experiment. Aquat. Toxicol.; 2007; 83, pp. 43-51. [DOI: https://dx.doi.org/10.1016/j.aquatox.2007.03.010]
92. Boyle, D.; Brix, K.V.; Amlund, H.; Lundebye, A.K.; Hogstrand, C.; Bury, N.R. Natural Arsenic Contaminated Diets Perturb Reproduction in Fish. Environ. Sci. Technol.; 2008; 42, pp. 5354-5360. [DOI: https://dx.doi.org/10.1021/es800230w]
93. Celino, F.T.; Yamaguchi, S.; Miura, C.; Miura, T. Arsenic Inhibits In Vitro Spermatogenesis and Induces Germ Cell Apoptosis in Japanese Eel (Anguilla japonica). Reproduction; 2009; 138, pp. 279-287. [DOI: https://dx.doi.org/10.1530/REP-09-0167] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19494047]
94. ATSDR Summary Data for 2015 Priority List of Hazardous Substances. Dep. Health Hum. Serv.; 2015; 22.
95. Zhou, Q.; Zhang, J.; Fu, J.; Shi, J.; Jiang, G. Biomonitoring: An Appealing Tool for Assessment of Metal Pollution in the Aquatic Ecosystem. Anal. Chim. Acta; 2008; 606, pp. 135-150. [DOI: https://dx.doi.org/10.1016/j.aca.2007.11.018] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18082645]
96. Taweel, A.; Shuhaimi-Othman, M.; Ahmad, A.K. Assessment of Heavy Metals in Tilapia Fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and Evaluation of the Health Risk from Tilapia Consumption. Ecotoxicol. Environ. Saf.; 2013; 93, pp. 45-51. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2013.03.031]
97. Chahid, A.; Hilali, M.; Benlhachimi, A.; Bouzid, T. Contents of Cadmium, Mercury and Lead in Fish from the Atlantic Sea (Morocco) Determined by Atomic Absorption Spectrometry. Food Chem.; 2014; 147, pp. 357-360. [DOI: https://dx.doi.org/10.1016/j.foodchem.2013.10.008]
98. Kumar, P.; Singh, A. Cadmium Toxicity in Fish: An Overview. Environ. Health Perspect.; 2010; 1, pp. 41-47.
99. Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of Toxic Elements (Mercury, Cadmium, Lead, Tin and Arsenic) in Fish and Shellfish Samples. Risk Assessment for the Consumers. Environ. Int.; 2013; 59, pp. 63-72. [DOI: https://dx.doi.org/10.1016/j.envint.2013.05.005]
100. Copat, C.; Arena, G.; Fiore, M.; Ledda, C.; Fallico, R.; Sciacca, S.; Ferrante, M. Heavy Metals Concentrations in Fish and Shellfish from Eastern Mediterranean Sea: Consumption Advisories. Food Chem. Toxicol.; 2013; 53, pp. 33-37. [DOI: https://dx.doi.org/10.1016/j.fct.2012.11.038]
101. Reynders, H.; Van Campenhout, K.; Bervoets, L.; De Coen, W.M.; Blust, R. Dynamics of Cadmium Accumulation and Effects in Common Carp (Cyprinus carpio) during Simultaneous Exposure to Water and Food (Tubifex Tubifex). Environ. Toxicol. Chem.; 2006; 25, pp. 1558-1567. [DOI: https://dx.doi.org/10.1897/05-239R.1]
102. Pratap, H.B. Effects of Ambient and Dietary Cadmium on Haematological Parametres in Oreochromis mossambicus Acclimatised to Low- and High-Calcium Water. Comp. Clin. Path.; 2008; 17, pp. 133-136. [DOI: https://dx.doi.org/10.1007/s00580-007-0714-y]
103. Almeida, J.A.; Diniz, Y.S.; Marques, S.F.G.; Faine, L.A.; Ribas, B.O.; Burneiko, R.C.; Novelli, E.L.B. The Use of the Oxidative Stress Responses as Biomarkers in Nile Tilapia (Oreochromis niloticus) Exposed to in Vivo Cadmium Contamination. Environ. Int.; 2002; 27, pp. 673-679. [DOI: https://dx.doi.org/10.1016/S0160-4120(01)00127-1]
104. Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicol. Environ. Saf.; 2006; 64, pp. 178-189. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2005.03.013]
105. Li, Z.H.; Li, P.; Dzyuba, B.; Randak, T. Influence of Environmental Related Concentrations of Heavy Metals on Motility Parameters and Antioxidant Responses in Sturgeon Sperm. Chem. Biol. Interact.; 2010; 188, pp. 473-477. [DOI: https://dx.doi.org/10.1016/j.cbi.2010.09.005]
106. Dietrich, G.J.; Dietrich, M.; Kowalski, R.K.; Dobosz, S.; Karol, H.; Demianowicz, W.; Glogowski, J. Exposure of Rainbow Trout Milt to Mercury and Cadmium Alters Sperm Motility Parameters and Reproductive Success. Aquat. Toxicol.; 2010; 97, pp. 277-284. [DOI: https://dx.doi.org/10.1016/j.aquatox.2009.12.010]
107. Dietrich, G.J.; Ciereszko, A.; Kowalski, R.K.; Rzemieniecki, A.; Bogdan, E.; Demianowicz, W.; Dietrich, M.; Kujawa, R.; Glogowski, J. Motility and Fertilizing Capacity of Frozen/Thawed Sperm of Siberian Sturgeon after a Short-Time Exposure of Fresh Semen to Mercury and Cadmium. J. Appl. Ichthyol.; 2012; 28, pp. 973-977. [DOI: https://dx.doi.org/10.1111/jai.12062]
108. Monteiro, M.I.C.; Fraga, I.C.S.; Yallouz, A.V.; De Oliveira, N.M.M.; Ribeiro, S.H. Determination of Total Chromium Traces in Tannery Effluents by Electrothermal Atomic Absorption Spectrometry, Flame Atomic Absorption Spectrometry and UV-Visible Spectrophotometric Methods. Talanta; 2002; 58, pp. 629-633. [DOI: https://dx.doi.org/10.1016/S0039-9140(02)00317-X] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18968791]
109. Palaniappan, P.R.; Karthikeyan, S. Bioaccumulation and Depuration of Chromium in the Selected Organs and Whole Body Tissues of Freshwater Fish Cirrhinus mrigala Individually and in Binary Solutions with Nickel. J. Environ. Sci.; 2009; 21, pp. 229-236. [DOI: https://dx.doi.org/10.1016/S1001-0742(08)62256-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19402427]
110. Vinodhini, R.; Narayanan, M. Bioaccumulation of Heavy Metals in Organs of Fresh Water Fish Cyprinus carpio (Common Carp). Int. J. Environ. Sci. Technol.; 2008; 5, pp. 179-182. [DOI: https://dx.doi.org/10.1007/BF03326011]
111. Ali, Z.; Yousafzai, A.M.; Sher, N.; Muhammad, I.; Nayab, G.E.; Aqeel, S.A.M.; Shah, S.T.; Aschner, M.; Khan, I.; Khan, H. Toxicity and Bioaccumulation of Manganese and Chromium in Different Organs of Common Carp (Cyprinus carpio) Fish. Toxicol. Rep.; 2021; 8, pp. 343-348. [DOI: https://dx.doi.org/10.1016/j.toxrep.2021.02.003]
112. Fawad, M.; Yousafzai, A.M.; Haseeb, A.; Rehman, H.U.; Akhtar, P.N.; Saeed, K. Khan University Mardan Buner Campus Khalid Usman, W.; Muhammad Fawad, C.; jan Afridi, A. et al. Acute Toxicity and Bioaccumulation of Chromium in Gills, Skin and Intestine of Goldfish (Carassius auratus). J. Entomol. Zool. Stud.; 2017; 5, pp. 568-571.
113. El Shafei, H.M. Bioaccumulation of Hexavalent Chromium in Tissues of a Freshwater Fish. Biochem. Anal. Biochem.; 2016; 5, pp. 2-5. [DOI: https://dx.doi.org/10.4172/2161-1009.1000272]
114. Shaheen, T.; Jabeen, F. Effect of Various Doses of Cr (VI) on Survival and Growth of Cyprinus carpio. Pak. J. Zool.; 2015; 47, pp. 913-919.
115. Madhavan, P.; Elumalai, K. Effects of Chromium (VI) on the Lipid Peroxidation and Antioxidant Parameters in the Gill and Kidney Tissues of Catfish, Clarias batrachus (Linnaeus, 1758) (Actinopterygii: Siluriformes). Int. J. Adv. Res. Biol. Sci; 2016; 3, pp. 249-255.
116. Bakshi, A.; Panigrahi, A.K. A Comprehensive Review on Chromium Induced Alterations in Fresh Water Fishes. Toxicol. Rep.; 2018; 5, pp. 440-447. [DOI: https://dx.doi.org/10.1016/j.toxrep.2018.03.007]
117. Islam, S.M.M.; Rohani, M.F.; Zabed, S.A.; Islam, M.T.; Jannat, R.; Akter, Y.; Shahjahan, M. Acute Effects of Chromium on Hemato-Biochemical Parameters and Morphology of Erythrocytes in Striped Catfish Pangasianodon hypophthalmus. Toxicol. Rep.; 2020; 7, pp. 664-670. [DOI: https://dx.doi.org/10.1016/j.toxrep.2020.04.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32489906]
118. Vutukuru, S.S. Chromium Induced Alterations in Some Biochemical Profiles of the Indian Major Carp, Labeo rohita (Hamilton). Bull. Environ. Contam. Toxicol.; 2003; 70, pp. 118-123. [DOI: https://dx.doi.org/10.1007/s00128-002-0164-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12478433]
119. Virk, S.; Sharma, A. Changes in the Biochemical Constituents of Gills of Cirrhinus mrigala (Ham). Follow. Expo. Met.; 2003; 50, pp. 113-117.
120. Krumschnabel, G.; Nawaz, M. Acute Toxicity of Hexavalent Chromium in Isolated Teleost Hepatocytes. Aquat. Toxicol.; 2004; 70, pp. 159-167. [DOI: https://dx.doi.org/10.1016/j.aquatox.2004.09.001]
121. Shaukat, T.; Javed, M. Acute Toxicity of Chromium for Ctenopharyngodon idella, Cyprinuscarpio and Tilapia nilotica. Int. J. Agric. Biol.; 2013; 15, pp. 590-594.
122. Selcuk, Z.; Tiril, S.U.; Alagil, F.; Belen, V.; Salman, M.; Cenesiz, S.; Muglali, O.H.; Yagci, F.B. Effects of Dietary L-Carnitine and Chromium Picolinate Supplementations on Performance and Some Serum Parameters in Rainbow Trout (Oncorhynchus mykiss). Aquac. Int.; 2010; 18, pp. 213-221. [DOI: https://dx.doi.org/10.1007/s10499-008-9237-z]
123. Chen, H.; Cao, J.; Li, L.; Wu, X.; Bi, R.; Klerks, P.L.; Xie, L. Maternal Transfer and Reproductive Effects of Cr(VI) in Japanese Medaka (Oryzias latipes) under Acute and Chronic Exposures. Aquat. Toxicol.; 2016; 171, pp. 59-68. [DOI: https://dx.doi.org/10.1016/j.aquatox.2015.12.011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26748265]
124. Ni, X.; Shen, Y. Transgenerational Effects of Hexavalent Chromium on Marine Medaka (Oryzias melastigma) Reveal Complex Transgenerational Adaptation in Offspring. Biomolecules; 2021; 11, 138. [DOI: https://dx.doi.org/10.3390/biom11020138] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33499049]
125. Mishra, A.K.; Mohanty, B. Histopathological Effects of Hexavalent Chromium in the Ovary of a Fresh Water Fish, Channa punctatus (Bloch). Bull. Environ. Contam. Toxicol.; 2008; 80, pp. 507-511. [DOI: https://dx.doi.org/10.1007/s00128-008-9406-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18392725]
126. Singh, V.K.; Singh, K.P.; Mohan, D. Status of Heavy Metals in Water and Bed Sediments of River Gomti-A Tributary of the Ganga River, India. Environ. Monit. Assess.; 2005; 105, pp. 43-67. [DOI: https://dx.doi.org/10.1007/s10661-005-2816-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15952511]
127. Paul, D. Research on Heavy Metal Pollution of River Ganga: A Review. Ann. Agrar. Sci.; 2017; 15, pp. 278-286. [DOI: https://dx.doi.org/10.1016/j.aasci.2017.04.001]
128. Mitra, S.; Sarkar, S.K.; Raja, P.; Biswas, J.K.; Murugan, K. Dissolved Trace Elements in Hooghly (Ganges) River Estuary, India: Risk Assessment and Implications for Management. Mar. Pollut. Bull.; 2018; 133, pp. 402-414. [DOI: https://dx.doi.org/10.1016/j.marpolbul.2018.05.057] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30041329]
129. Çoǧun, H.Y.; Yüzereroǧlu, T.A.; Kargin, F. Accumulation of Copper and Cadmium in Small and Large Nile Tilapia Oreochromis niloticus. Bull. Environ. Contam. Toxicol.; 2003; 71, pp. 1265-1271. [DOI: https://dx.doi.org/10.1007/s00128-003-8523-8]
130. Subathra, S.; Karuppasamy, R. Bioaccumulation and Depuration Pattern of Copper in Different Tissues of Mystus vittatus, Related to Various Size Groups. Arch. Environ. Contam. Toxicol.; 2008; 54, pp. 236-244. [DOI: https://dx.doi.org/10.1007/s00244-007-9028-y]
131. Aldoghachi, M.A.J.; Rahman, M.M.; Yusoff, I.; Sofian-Azirun, M. Acute Toxicity and Bioaccumulation of Heavy Metals in Red Tilapia Fish. J. Anim. Plant Sci.; 2016; 26, pp. 507-513.
132. Shukla, V.; Dhankhar, M.; Prakash, J.; Sastry, K.V. Bioaccumulation of Zn, Cu and Cd in Channa punctatus. J. Environ. Biol.; 2007; 28, pp. 395-397.
133. Alsop, D.; Brown, S.; Van Der Kraak, G. The Effects of Copper and Benzo[a]Pyrene on Retinoids and Reproduction in Zebrafish. Aquat. Toxicol.; 2007; 82, pp. 281-295. [DOI: https://dx.doi.org/10.1016/j.aquatox.2007.03.001]
134. Howe, P.D.; Malcolm, M.H.M.; Dobson, D.S. Manganese and its Compounds: Environmental Aspects; World Health Organization: Geneva, Switzerland, 2005.
135. Morillo, J.; Usero, J. Trace Metal Bioavailability in the Waters of Two Different Habitats in Spain: Huelva Estuary and Algeciras Bay. Ecotoxicol. Environ. Saf.; 2008; 71, pp. 851-859. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2008.01.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18308395]
136. Bradbury, S.P.; Carlson, R.W.; Henry, T.R.; Padilla, S.; Cowden, J. Groundwater Water Treatment for Iron and Manganese Reduction and Fish Rearing Studies Applied to the Design of the Ruth Burnett Sport Fish Hatchery, Fairbanks, Alaska. Aquac. Eng.; 2009; 41, pp. 97-108. [DOI: https://dx.doi.org/10.1016/j.aquaeng.2009.06.005]
137. Partridge, G.J.; Lymbery, A.J. Effects of Manganese on Juvenile Mulloway (Argyrosomus Japonicus) Cultured in Water with Varying Salinity-Implications for Inland Mariculture. Aquaculture; 2009; 290, pp. 311-316. [DOI: https://dx.doi.org/10.1016/j.aquaculture.2009.02.020]
138. Vieira, M.C.; Torronteras, R.; Córdoba, F.; Canalejo, A. Acute Toxicity of Manganese in Goldfish Carassius Auratus Is Associated with Oxidative Stress and Organ Specific Antioxidant Responses. Ecotoxicol. Environ. Saf.; 2012; 78, pp. 212-217. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2011.11.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22154142]
139. Chen, M.T.; Cheng, G.W.; Lin, C.C.; Chen, B.H.; Huang, Y.L. Effects of Acute Manganese Chloride Exposure on Lipid Peroxidation and Alteration of Trace Metals in Rat Brain. Biol. Trace Elem. Res.; 2006; 110, pp. 163-177. [DOI: https://dx.doi.org/10.1385/BTER:110:2:163] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16757844]
140. Wang, X.; Liu, B.L.; Gao, X.Q.; Fang, Y.Y.; Zhang, X.H.; Cao, S.Q.; Zhao, K.F.; Wang, F. Effect of Long-Term Manganese Exposure on Oxidative Stress, Liver Damage and Apoptosis in Grouper Epinephelus moara ♀ × Epinephelus lanceolatus ♂. Front. Mar. Sci.; 2022; 9, pp. 1-11. [DOI: https://dx.doi.org/10.3389/fmars.2022.1000282]
141. Eisler, R. Nickel Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, U.S. Geological Survey. Biol. Sci. Rep.; 1998; 34, 95.
142. Pyle, G.; Couture, P. Homeostasis and Toxicology of Essential Metals. Fish Physiology; Wood, C.M.; Farrell, A.P.; Brauner, C.J. Academic Press: Cambridge, MA, USA, 2012; Volume 31, pp. 253-289. [DOI: https://dx.doi.org/10.1016/S1546-5098(11)31005-9]
143. Pane, E.F.; Richards, J.G.; Wood, C.M. Acute Waterborne Nickel Toxicity in the Rainbow Trout (Oncorhynchus mykiss) Occurs by a Respiratory Rather than Ionoregulatory Mechanism. Aquat. Toxicol.; 2003; 63, pp. 65-82. [DOI: https://dx.doi.org/10.1016/S0166-445X(02)00131-5]
144. Pane, E.F.; Haque, A.; Goss, G.G.; Wood, C.M. The Physiological Consequences of Exposure to Chronic, Sufblethal Waterborne Nickel in Rainbow Trout (Oncorhynchus mykiss): Exercise vs Resting Physiology. J. Exp. Biol.; 2004; 207, pp. 1249-1261. [DOI: https://dx.doi.org/10.1242/jeb.00871]
145. Pane, E.F.; Haque, A.; Wood, C.M. Mechanistic Analysis of Acute, Ni-Induced Respiratory Toxicity in the Rainbow Trout (Oncorhynchus mykiss): An Exclusively Branchial Phenomenon. Aquat. Toxicol.; 2004; 69, pp. 11-24. [DOI: https://dx.doi.org/10.1016/j.aquatox.2004.04.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15210294]
146. Brix, K.V.; Keithly, J.; DeForest, D.K.; Laughlin, J. Acute and Chronic Toxicity of Nickel to Rainbow Trout (Oncorhynchus mykiss). Environ. Toxicol. Chem.; 2004; 23, pp. 2221-2228. [DOI: https://dx.doi.org/10.1897/03-38]
147. Blewett, T.A.; Wood, C.M.; Glover, C.N. Salinity-Dependent Nickel Accumulation and Effects on Respiration, Ion Regulation and Oxidative Stress in the Galaxiid Fish, Galaxias maculatus. Environ. Pollut.; 2016; 214, pp. 132-141. [DOI: https://dx.doi.org/10.1016/j.envpol.2016.04.010]
148. Blewett, T.A.; Wood, C.M. Salinity-Dependent Nickel Accumulation and Oxidative Stress Responses in the Euryhaline Killifish (Fundulus heteroclitus). Arch. Environ. Contam. Toxicol.; 2015; 68, pp. 382-394. [DOI: https://dx.doi.org/10.1007/s00244-014-0115-6]
149. Blewett, T.A.; Ransberry, V.E.; McClelland, G.B.; Wood, C.M. Investigating the Mechanisms of Ni Uptake and Sub-Lethal Toxicity in the Atlantic Killifish Fundulus Heteroclitus in Relation to Salinity. Environ. Pollut.; 2016; 211, pp. 370-381. [DOI: https://dx.doi.org/10.1016/j.envpol.2016.01.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26796747]
150. Svecevičius, G. Acute Toxicity of Nickel to Five Species of Freshwater Fish. Polish J. Environ. Stud.; 2010; 19, pp. 453-456.
151. Al-Attar, A.M. The Influences of Nickel Exposure on Selected Physiological Parameters and Gill Structure in the Teleost Fish, Oreochromis niloticus. J. Biol. Sci.; 2007; 7, pp. 77-85. [DOI: https://dx.doi.org/10.3923/jbs.2007.77.85]
152. Leonard, E.M.; Barcarolli, I.; Silva, K.R.; Wasielesky, W.; Wood, C.M.; Bianchini, A. The Effects of Salinity on Acute and Chronic Nickel Toxicity and Bioaccumulation in Two Euryhaline Crustaceans: Litopenaeus vannamei and Excirolana armata. Comp. Biochem. Physiol.-C Toxicol. Pharmacol.; 2011; 154, pp. 409-419. [DOI: https://dx.doi.org/10.1016/j.cbpc.2011.07.011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21810485]
153. Leonard, E.M.; Marentette, J.R.; Balshine, S.; Wood, C.M. Critical Body Residues, Michaelis-Menten Analysis of Bioaccumulation, Lethality and Behaviour as Endpoints of Waterborne Ni Toxicity in Two Teleosts. Ecotoxicology; 2014; 23, pp. 147-162. [DOI: https://dx.doi.org/10.1007/s10646-013-1159-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24402007]
154. Leonard, E.M.; Wood, C.M. Acute Toxicity, Critical Body Residues, Michaelis-Menten Analysis of Bioaccumulation, and Ionoregulatory Disturbance in Response to Waterborne Nickel in Four Invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex. Comp. Biochem. Physiol.-C Toxicol. Pharmacol.; 2013; 158, pp. 10-21. [DOI: https://dx.doi.org/10.1016/j.cbpc.2013.03.008]
155. James, R.; Sampath, K. Effect of Zeolite on the Reduction of Cadmium Toxicity in Water and a Freshwater Fish, Oreochromis mossambicus. Bull. Environ. Contam. Toxicol.; 1999; 62, pp. 222-229. [DOI: https://dx.doi.org/10.1007/s001289900863]
156. Kubrak, O.I.; Rovenko, B.M.; Husak, V.V.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Nickel Induces Hyperglycemia and Glycogenolysis and Affects the Antioxidant System in Liver and White Muscle of Goldfish Carassius auratus L. Ecotoxicol. Environ. Saf.; 2012; 80, pp. 231-237. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2012.03.006]
157. Kubrak, O.I.; Husak, V.V.; Rovenko, B.M.; Poigner, H.; Kriews, M.; Abele, D.; Lushchak, V.I. Antioxidant System Efficiently Protects Goldfish Gills from Ni2+-Induced Oxidative Stress. Chemosphere; 2013; 90, pp. 971-976. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2012.06.044] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22832340]
158. Kubrak, O.I.; Poigner, H.; Husak, V.V.; Rovenko, B.M.; Meyer, S.; Abele, D.; Lushchak, V.I. Goldfish Brain and Heart Are Well Protected from Ni2+-Induced Oxidative Stress. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol.; 2014; 162, pp. 43-50. [DOI: https://dx.doi.org/10.1016/j.cbpc.2014.03.011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24704544]
159. Blewett, T.A.; Leonard, E.M. Mechanisms of Nickel Toxicity to Fish and Invertebrates in Marine and Estuarine Waters. Environ. Pollut.; 2017; 223, pp. 311-322. [DOI: https://dx.doi.org/10.1016/j.envpol.2017.01.028] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28122673]
160. Ptashynski, M.D.; Pedlar, R.M.; Evans, R.E.; Baron, C.L.; Klaverkamp, J.F. Toxicology of Dietary Nickel in Lake Whitefish (Coregonus clupeaformis). Aquat. Toxicol.; 2002; 58, pp. 229-247. [DOI: https://dx.doi.org/10.1016/S0166-445X(01)00239-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12007877]
161. Bielmyer, G.K.; Jarvis, T.A.; Harper, B.T.; Butler, B.; Rice, L.; Ryan, S.; McLoughlin, P. Metal Accumulation from Dietary Exposure in the Sea Urchin, Strongylocentrotus droebachiensis. Arch. Environ. Contam. Toxicol.; 2012; 63, pp. 86-94. [DOI: https://dx.doi.org/10.1007/s00244-012-9755-6]
162. Niyogi, S.; Brix, K.V.; Grosell, M. Effects of Chronic Waterborne Nickel Exposure on Growth, Ion Homeostasis, Acid-Base Balance, and Nickel Uptake in the Freshwater Pulmonate Snail, Lymnaea stagnalis. Aquat. Toxicol.; 2014; 150, pp. 36-44. [DOI: https://dx.doi.org/10.1016/j.aquatox.2014.02.012]
163. Alsop, D.; Lall, S.P.; Wood, C.M. Reproductive Impacts and Physiological Adaptations of Zebrafish to Elevated Dietary Nickel. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol.; 2014; 165, pp. 67-75. [DOI: https://dx.doi.org/10.1016/j.cbpc.2014.05.001]
164. Sfakianakis, D.G.; Renieri, E.; Kentouri, M.; Tsatsakis, A.M. Effect of Heavy Metals on Fish Larvae Deformities: A Review. Environ. Res.; 2015; 137, pp. 246-255. [DOI: https://dx.doi.org/10.1016/j.envres.2014.12.014]
165. Jezierska, B.; Witeska, M. The Metal Uptake and Accumulation in Fish Living in Polluted Waters Bt-Soil and Water Pollution Monitoring, Protection and Remediation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 107-114.
166. Adeyemo, O.K. Haematological Profile of Clarias gariepinus (Burchell, 1822) Exposed to Lead. Turkish J. Fish. Aquat. Sci.; 2007; 7, pp. 163-169.
167. Dai, W.; Du, H.; Fu, L.; Jin, C.; Xu, Z.; Liu, H. Effects of Dietary Pb on Accumulation, Histopathology, and Digestive Enzyme Activities in the Digestive System of Tilapia (Oreochromis niloticus). Biol. Trace Elem. Res.; 2009; 127, pp. 124-131. [DOI: https://dx.doi.org/10.1007/s12011-008-8227-3]
168. Victor, K.; Patience, A. Accumulation of Lead in the Tissues of Freshwater Catfish Clarias Gariepinus Exposed to Static Nominal Concentrations of Lead Nitrate. Agric. Biol. J. N. Am.; 2012; 3, pp. 510-515. [DOI: https://dx.doi.org/10.5251/abjna.2012.3.12.510.515]
169. Banaee, M.; Haghi, B.N.; Zoheiri, F. Original Article LC 50 and Bioaccumulation of Lead Nitrate (Pb(NO3)2) in Goldfish (Carassius auratus). Int. J. Aquat. Biol.; 2013; 1, pp. 233-239.
170. Khalesi, M.K.; Abedi, Z.; Behrouzi, S.; Kohestan Eskandari, S. Haematological, Blood Biochemical and Histopathological Effects of Sublethal Cadmium and Lead Concentrations in Common Carp. Bulg. J. Vet. Med.; 2017; 20, pp. 141-150. [DOI: https://dx.doi.org/10.15547/bjvm.965]
171. Abdel-Warith, A.W.A.; Younis, E.S.M.I.; Al-Asgah, N.A.; Rady, A.M.; Allam, H.Y. Bioaccumulation of Lead Nitrate in Tissues and Its Effects on Hematological and Biochemical Parameters of Clarias gariepinus. Saudi J. Biol. Sci.; 2020; 27, pp. 840-845. [DOI: https://dx.doi.org/10.1016/j.sjbs.2020.01.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32127760]
172. Shah, S.L. Hematological Parameters in Tench Tinca Tinca after Short Term Exposure to Lead. J. Appl. Toxicol.; 2006; 26, pp. 223-228. [DOI: https://dx.doi.org/10.1002/jat.1129]
173. Tawari-Fufeyin, P.; Igetei, J.; Okoidigun, M.E. Changes in the Catfish (Clarias gariepinus) Exposed to Acute Cadmium and Lead Poisoning. Biosci. Res. Commun.; 2008; 20, pp. 271-276.
174. Stanley, O.N.; Omerebele, U.A.M. Changes in the Haematological Parameters of Clarias gariepinus Exposed to Lead Poisoning. J. Fish. Int.; 2010; 5, pp. 72-76. [DOI: https://dx.doi.org/10.3923/jfish.2010.72.76]
175. Mahmoud, U.; Ebied, A.; Mohamed, S. Effect of Lead on Some Haematological and Biochemical Characteristics of Clarias gariepinus Dietary Supplemented with Lycopene and Vitamin E. Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol.; 2013; 5, pp. 67-89. [DOI: https://dx.doi.org/10.21608/eajbsc.2013.16112]
176. Ikeogu, C.F.; Nsofor, C.I.; Igwilo, I.O.; Ngene, A.A. Haematological and Serological Responses of Clarias gariepinus to Sublethal Concentrations of Lead Nitrate. J. Pharm. Sci. Biosci. Res.; 2016; 6, pp. 442-446.
177. Yang, J.L.; Chen, H.C. Serum Metabolic Enzyme Activities and Hepatocyte Ultrastructure of Common Carp after Gallium Exposure. Zool. Stud.; 2003; 42, pp. 455-461.
178. Pérez-Rostro, C.I.; Racotta, I.S.; Ibarra, A.M. Decreased Genetic Variation in Metabolic Variables of Litopenaeus vannamei Shrimp after Exposure to Acute Hypoxia. J. Exp. Mar. Bio. Ecol.; 2004; 302, pp. 189-200. [DOI: https://dx.doi.org/10.1016/j.jembe.2003.10.010]
179. Olojo, E.A.A.; Abass, A.A.; Olurin, K.B.; Mbaka, G. The Potential Use of Certain Protein Metabolism Parameters as Biomarkers of Heavy Metal (Lead) Stress in the African Catfish, Clarias gariepinus. Agric. J.; 2012; 7, pp. 316-322. [DOI: https://dx.doi.org/10.3923/aj.2012.316.322]
180. Javed, M. Effects of Zinc and Lead Toxicity on the Growth and Their Bioaccumulation in Fish. Pak. Vet. J.; 2012; 32, pp. 357-362.
181. Zhai, Q.; Wang, H.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Dietary Lactobacillus Plantarum Supplementation Decreases Tissue Lead Accumulation and Alleviates Lead Toxicity in Nile Tilapia (Oreochromis niloticus). Aquac. Res.; 2017; 48, pp. 5094-5103. [DOI: https://dx.doi.org/10.1111/are.13326]
182. Giri, S.S.; Yun, S.; Jun, J.W.; Kim, H.J.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Han, S.J.; Sukumaran, V.; Park, S.C. Therapeutic Effect of Intestinal Autochthonous Lactobacillus reuteri P16 against Waterborne Lead Toxicity in Cyprinus carpio. Front. Immunol.; 2018; 9, 1824. [DOI: https://dx.doi.org/10.3389/fimmu.2018.01824] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30131809]
183. Zulfahmi, I.; Rahmi, A.; Muliari, M.; Akmal, Y.; Paujiah, E.; Sumon, K.A.; Rahman, M.M. Exposure to Lead Nitrate Alters Growth and Haematological Parameters of Milkfish (Chanos chanos). Bull. Environ. Contam. Toxicol.; 2021; 107, pp. 860-867. [DOI: https://dx.doi.org/10.1007/s00128-021-03344-y]
184. Carpenè, E.; Andreani, G.; Monari, M.; Kindt, M.; Isani, G. Biochemical Changes during Post-Larval Growth in White Muscle of Gilthead Sea Bream (Sparus aurata) Fed Zinc-Fortified Diets. Vet. Res. Commun.; 2003; 27, pp. 215-218. [DOI: https://dx.doi.org/10.1023/B:VERC.0000014143.28892.34]
185. Sun, J.Y.; Jing, M.Y.; Wang, J.F.; Zi, N.T.; Fu, L.J.; Lu, M.Q.; Pan, L. Effect of Zinc on Biochemical Parameters and Changes in Related Gene Expression Assessed by CDNA Microarrays in Pituitary of Growing Rats. Nutrition; 2006; 22, pp. 187-196. [DOI: https://dx.doi.org/10.1016/j.nut.2005.07.007]
186. Senthil Murugan, S.; Karuppasamy, R.; Poongodi, K.; Puvaneswari, S. Bioaccumulation Pattern of Zinc in Freshwater Fish Channa punctatus (Bloch.) after Chronic Exposure. Turkish J. Fish. Aquat. Sci.; 2008; 59, pp. 55-59.
187. Schmitt, C.J. Concentrations of Arsenic, Cadmium, Copper, Lead, Selenium, and Zinc in Fish from the Mississippi River Basin, 1995. Environ. Monit. Assess.; 2004; 90, pp. 289-321. [DOI: https://dx.doi.org/10.1023/B:EMAS.0000003594.64248.0a] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15887377]
188. Bowen, L.; Werner, I.; Johnson, M.L. Physiological and Behavioral Effects of Zinc and Temperature on Coho Salmon (Oncorhynchus kisutch). Hydrobiologia; 2006; 559, pp. 161-168. [DOI: https://dx.doi.org/10.1007/s10750-005-1095-3]
189. Abdel-Tawwab, M.; El-Sayed, G.O.; Shady, S.H. Growth, Biochemical Variables, and Zinc Bioaccumulation in Nile Tilapia, Oreochromis niloticus (L.) as Affected by Water-Born Zinc Toxicity and Exposure Period. Int. Aquat. Res.; 2016; 8, pp. 197-206. [DOI: https://dx.doi.org/10.1007/s40071-016-0135-0]
190. Shiau, S.Y.; Jiang, L.C. Dietary Zinc Requirements of Grass Shrimp, Penaeus monodon, and Effects on Immune Responses. Aquaculture; 2006; 254, pp. 476-482. [DOI: https://dx.doi.org/10.1016/j.aquaculture.2005.10.033]
191. Abdel-Tawwab, M.; El-Sayed, G.O.; Shady, S.H. Effects of Dietary Protein Levels and Environmental Zinc Exposure on the Growth, Feed Utilization, and Biochemical Variables of Nile Tilapia, Oreochromis niloticus (L.). Toxicol. Environ. Chem.; 2012; 94, pp. 1368-1382. [DOI: https://dx.doi.org/10.1080/02772248.2012.703202]
192. Abdel-Tawwab, M.; Mousaad, M.N.; Sharafeldin, K.M.; Ismaiel, N.E. Changes in Growth and Biochemical Status of Common Carp, Cyprinus carpio L. Exposed to Water-Born Zinc Toxicity for Different Periods. Int. Aquat. Res.; 2013; 5, 11. [DOI: https://dx.doi.org/10.1186/2008-6970-5-11]
193. Xiong, D.; Fang, T.; Yu, L.; Sima, X.; Zhu, W. Effects of Nano-Scale TiO2, ZnO and Their Bulk Counterparts on Zebrafish: Acute Toxicity, Oxidative Stress and Oxidative Damage. Sci. Total Environ.; 2011; 409, pp. 1444-1452. [DOI: https://dx.doi.org/10.1016/j.scitotenv.2011.01.015]
194. Carmo e Sa, M.V.d.; Pezzato, L.E.; Ferreira Lima, M.M.B.; De Magalhães Padilha, P. Optimum Zinc Supplementation Level in Nile Tilapia Oreochromis niloticus Juveniles Diets. Aquaculture; 2004; 238, pp. 385-401. [DOI: https://dx.doi.org/10.1016/j.aquaculture.2004.06.011]
195. Tan, L.N.; Feng, L.; Liu, Y.; Jiang, J.; Jiang, W.D.; Hu, K.; Li, S.H.; Zhou, X.Q. Growth, Body Composition and Intestinal Enzyme Activities of Juvenile Jian Carp (Cyprinus carpio Var. Jian) Fed Graded Levels of Dietary Zinc. Aquac. Nutr.; 2011; 17, pp. 338-345. [DOI: https://dx.doi.org/10.1111/j.1365-2095.2010.00793.x]
196. Luo, Z.; Tan, X.Y.; Zheng, J.L.; Chen, Q.L.; Liu, C.X. Quantitative Dietary Zinc Requirement of Juvenile Yellow Catfish Pelteobagrus fulvidraco, and Effects on Hepatic Intermediary Metabolism and Antioxidant Responses. Aquaculture; 2011; 319, pp. 150-155. [DOI: https://dx.doi.org/10.1016/j.aquaculture.2011.06.047]
197. Salvaggio, A.; Marino, F.; Albano, M.; Pecoraro, R.; Camiolo, G.; Tibullo, D.; Bramanti, V.; Lombardo, B.M.; Saccone, S.; Mazzei, V. et al. Toxic Effects of Zinc Chloride on the Bone Development in Danio rerio (Hamilton, 1822). Front. Physiol.; 2016; 7, pp. 1-6. [DOI: https://dx.doi.org/10.3389/fphys.2016.00153]
198. Coppo, J.A.; Mussart, N.B.; Fioranelli, S.A. Physiological Variation of Enzymatic Activities in Blood of Bullfrog, Rana Catesbeiana (Shaw, 1802). Rev. Vet.; 2002; 216, pp. 2001-2002.
199. Chen, C.Y.; Wooster, G.A.; Bowser, P.R. Comparative Blood Chemistry and Histopathology of Tilapia Infected with Vibrio vulnificus or Streptococcus iniae or Exposed to Carbon Tetrachloride, Gentamicin, or Copper Sulfate. Aquaculture; 2004; 239, pp. 421-443. [DOI: https://dx.doi.org/10.1016/j.aquaculture.2004.05.033]
200. Firat, Ö.; Kargin, F. Individual and Combined Effects of Heavy Metals on Serum Biochemistry of Nile Tilapia Oreochromis niloticus. Arch. Environ. Contam. Toxicol.; 2010; 58, pp. 151-157. [DOI: https://dx.doi.org/10.1007/s00244-009-9344-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19488801]
201. Cakmak, G.; Togan, I.; Severcan, F. 17β-Estradiol Induced Compositional, Structural and Functional Changes in Rainbow Trout Liver, Revealed by FT-IR Spectroscopy: A Comparative Study with Nonylphenol. Aquat. Toxicol.; 2006; 77, pp. 53-63. [DOI: https://dx.doi.org/10.1016/j.aquatox.2005.10.015]
202. Abdel-Tawwab, M.; Khattab, Y.A.E.; Ahmad, M.H.; Shalaby, A.M.E. Compensatory Growth, Feed Utilization, Whole-Body Composition, and Hematological Changes in Starved Juvenile Nile Tilapia, Oreochromis niloticus (L.). J. Appl. Aquac.; 2006; 18, pp. 17-36. [DOI: https://dx.doi.org/10.1300/J028v18n03_02]
203. Mohanty, M.; Adhikari, S.; Mohanty, P.; Sarangi, N. Effect of Waterborne Zinc on Survival, Growth, and Feed Intake of Indian Major Carp, Cirrhinus mrigala (Hamilton). Water. Air. Soil Pollut.; 2009; 201, pp. 3-7. [DOI: https://dx.doi.org/10.1007/s11270-008-9921-7]
204. Palaniappan, P.R.; Nishanth, T.; Renju, V.B. Bioconcentration of Zinc and Its Effect on the Biochemical Constituents of the Gill Tissues of Labeo rohita: An FT-IR Study. Infrared Phys. Technol.; 2010; 53, pp. 103-111. [DOI: https://dx.doi.org/10.1016/j.infrared.2009.10.003]
205. Al-Asgah, N.A.; Abdel-Warith, A.W.A.; Younis, E.S.M.; Allam, H.Y. Haematological and Biochemical Parameters and Tissue Accumulations of Cadmium in Oreochromis niloticus Exposed to Various Concentrations of Cadmium Chloride. Saudi J. Biol. Sci.; 2015; 22, pp. 543-550. [DOI: https://dx.doi.org/10.1016/j.sjbs.2015.01.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26288556]
206. Szebedinszky, C.; McGeer, J.C.; McDonald, D.G.; Wood, C.M. Effects of Chronic Cd Exposure via the Diet or Water on Internal Organ-Specific Distribution and Subsequent Gill Cd Uptake Kinetics in Juvenile Rainbow Trout (Oncorhynchus mykiss). Environ. Toxicol. Chem.; 2001; 20, pp. 597-607. [DOI: https://dx.doi.org/10.1002/etc.5620200320]
207. Hollis, L.; Hogstrand, C.; Wood, C.M. Tissue-Specific Cadmium Accumulation, Metallothionein Induction, and Tissue Zinc and Copper Levels during Chronic Sublethal Cadmium Exposure in Juvenile Rainbow Trout. Arch. Environ. Contam. Toxicol.; 2001; 41, pp. 468-474. [DOI: https://dx.doi.org/10.1007/s002440010273]
208. Cirillo, T.; Amodio Cocchieri, R.; Fasano, E.; Lucisano, A.; Tafuri, S.; Ferrante, M.C.; Carpenè, E.; Andreani, G.; Isani, G. Cadmium Accumulation and Antioxidant Responses in Sparus aurata Exposed to Waterborne Cadmium. Arch. Environ. Contam. Toxicol.; 2012; 62, pp. 118-126. [DOI: https://dx.doi.org/10.1007/s00244-011-9676-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21553241]
209. Ahmed, M.S.; Bibi, S. Uptake and Bioaccumulation of Water Borne Lead (Pb) in the Fingerlings of a Freshwater Cyprinid, Catla catla L. J. Anim. Plant Sci.; 2010; 20, pp. 201-207.
210. Alves, L.C.; Glover, C.N.; Wood, C.M. Dietary Pb Accumulation in Juvenile Freshwater Rainbow Trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol.; 2006; 51, pp. 615-625. [DOI: https://dx.doi.org/10.1007/s00244-005-0212-7]
211. Pichhode, M.; Gaherwal, S. Effect of Heavy Metal Toxicity, Arsenic Trioxide on the Biochemical Parameter of Fresh Water Fish, Clarias batrachus. Poll Res; 2020; 39, pp. 123-125. [DOI: https://dx.doi.org/10.13140/RG.2.2.17104.87044]
212. Soundararajan, M.; Veeraiyan, G. Effect of heavy metal arsenic on haematological parameters of fresh water fish, Tilapia mossambica. Int. J. Mod. Res. Rev.; 2014; 2, pp. 132-135.
213. Ahmed, M.K.; Habibullah-Al-Mamun, M.; Parvin, E.; Akter, M.S.; Khan, M.S. Arsenic Induced Toxicity and Histopathological Changes in Gill and Liver Tissue of Freshwater Fish, Tilapia (Oreochromis mossambicus). Exp. Toxicol. Pathol.; 2013; 65, pp. 903-909. [DOI: https://dx.doi.org/10.1016/j.etp.2013.01.003]
214. Naz, S.; Hussain, R.; Ullah, Q.; Manan, A.; Chatha, M.; Shaheen, A.; Khan, R.U. Toxic Effect of Some Heavy Metals on Hematology and Histopathology of Major Carp (Catla catla). Environ. Sci. Pollut. Res.; 2020; 28, pp. 6533-6539. [DOI: https://dx.doi.org/10.1007/s11356-020-10980-0]
215. Fazio, F.; Sikandar, S.; Saira, H.; Mehmood, N.; Husnain, A.; Concetta, H. Cadmium Sub-Lethal Concentration Effect on Growth, Haematological and Biochemical Parameters of Mystus seenghala (Sykes, 1839). Biol. Trace Elem. Res.; 2022; 200, pp. 2432-2438. [DOI: https://dx.doi.org/10.1007/s12011-021-02852-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34373978]
216. Xie, D.; Li, Y.; Liu, Z.; Chen, Q. Comparative Biochemistry and Physiology, Part C Inhibitory e Ff Ect of Cadmium Exposure on Digestive Activity, Antioxidant Capacity and Immune Defense in the Intestine of Yellow Cat Fi Sh (Pelteobagrus fulvidraco). Comp. Biochem. Physiol. Part C; 2019; 222, pp. 65-73. [DOI: https://dx.doi.org/10.1016/j.cbpc.2019.04.012]
217. Banday, U.Z.; Swaleh, S.B.; Usmani, N. Ecotoxicology and Environmental Safety Insights into the Heavy Metal-Induced Immunotoxic and Genotoxic Alterations as Health Indicators of Clarias gariepinus Inhabiting a Rivulet. Ecotoxicol. Environ. Saf.; 2019; 183, 109584. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2019.109584]
218. Phoonaploy, U.; Tengjaroenkul, B. Effects of Electronic Waste on Cytogenetic and Physiological Changes in Snakehead Fish (Channa striata). Environ. Monit. Assess.; 2019; 191, 363. [DOI: https://dx.doi.org/10.1007/s10661-019-7509-x]
219. Rajeshkumar, S.; Liu, Y.; Ma, J.; Duan, H.Y.; Li, X. 1 Effects of Exposure to Multiple Heavy Metals on Biochemical and Histopathological Alterations in Common Carp, Cyprinus carpio L. Fish Shellfish Immunol.; 2017; 70, pp. 461-472. [DOI: https://dx.doi.org/10.1016/j.fsi.2017.08.013]
220. Chandanshive, S.S.; Sarwade, P.P.; Humbe, A.; Mohekar, A.D. Effect of Heavy Metal Model Mixture on Haematological Parameters of Labeo rohita from Gharni Dam Nalegaon, Latur. Int. Multidiscip. Res. J.; 2012; 2, pp. 10-12.
221. Mohamed, A.A.R.; El-Houseiny, W.; EL-Murr, A.E.; Ebraheim, L.L.M.; Ahmed, A.I.; El-Hakim, Y.M.A. Effect of Hexavalent Chromium Exposure on the Liver and Kidney Tissues Related to the Expression of CYP450 and GST Genes of Oreochromis niloticus Fish: Role of Curcumin Supplemented Diet. Ecotoxicol. Environ. Saf.; 2020; 188, 109890. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2019.109890] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31704321]
222. Benjamin, L.V.; Kutty, R. Sub-Lethal Effects of Potassium Dichromate on Hematological and Histological Parameters in Climbing Perch, Anabas testudineus (Anabantidae). Int. J. Aquat. Biol; 2019; 7, pp. 140-145. [DOI: https://dx.doi.org/10.22034/ijab.v7i3.604]
223. Javed, M.; Ahmad, M.I.; Usmani, N.; Ahmad, M. Multiple Biomarker Responses (Serum Biochemistry, Oxidative Stress, Genotoxicity and Histopathology) in Channa punctatus Exposed to Heavy Metal Loaded Waste Water /704/172/4081 /631/601 Article. Sci. Rep.; 2017; 7, pp. 1-11. [DOI: https://dx.doi.org/10.1038/s41598-017-01749-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28490783]
224. Ghosh, A.; Ali, S.; Mukherjee, S.K.; Saha, S.; Kaviraj, A. Bioremediation of Copper and Nickel from Freshwater Fish Cyprinus carpio Using Rhiozoplane Bacteria Isolated from Pistia Stratiotes. Environ. Process.; 2020; 7, pp. 443-461. [DOI: https://dx.doi.org/10.1007/s40710-020-00436-5]
225. Kawade, S. Histopathological Alterations in the Liver of Freshwater Fish, Channa gachua (Ham.) on Acute Exposure to Nickel. J. Emerg. Technol. Innov. Res.; 2020; 7, pp. 1025-1030.
226. Wang, R.F.; Zhu, L.M.; Zhang, J.; An, X.P.; Yang, Y.P.; Song, M.; Zhang, L. Developmental Toxicity of Copper in Marine Medaka (Oryzias melastigma) Embryos and Larvae. Chemosphere; 2020; 247, 125923. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2020.125923]
227. Jantawongsri, K.; Nørregaard, R.D.; Bach, L.; Dietz, R.; Sonne, C.; Jørgensen, K.; Lierhagen, S.; Ciesielski, T.M.; Jenssen, B.M.; Haddy, J. et al. Histopathological Effects of Short-Term Aqueous Exposure to Environmentally Relevant Concentration of Lead (Pb) in Shorthorn Sculpin (Myoxocephalus scorpius) under Laboratory Conditions. Environ. Sci. Pollut. Res.; 2021; 28, pp. 61423-61440. [DOI: https://dx.doi.org/10.1007/s11356-021-14972-6]
228. Hajirezaee, S.; Ajdari, A.; Azhang, B. Metabolite Profiling, Histological and Oxidative Stress Responses in the Grey Mullet, Mugil cephalus Exposed to the Environmentally Relevant Concentrations of the Heavy Metal, Pb(NO3)2. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol.; 2021; 244, 109004. [DOI: https://dx.doi.org/10.1016/j.cbpc.2021.109004] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33609749]
229. Hayati, A.; Supriyanto, A.; Suhargo, L.; Hayaza, S.; Ayubu, A. Bioremediation Potency of Probiotics on Cadmium Pollution to Improve Fish Reproductive Health. Pollut. Res.; 2020; 39, pp. 980-984.
230. Guiné, V.; Spadini, L.; Sarret, G.; Muris, M.; Delolme, C.; Gaudet, J.P.; Martins, J.M.F. Zinc Sorption to Three Gram-Negative Bacteria: Combined Titration, Modeling, and EXAFS Study. Environ. Sci. Technol.; 2006; 40, pp. 1806-1813. [DOI: https://dx.doi.org/10.1021/es050981l] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16570601]
231. Comte, S.; Guibaud, G.; Baudu, M. Biosorption Properties of Extracellular Polymeric Substances (EPS) towards Cd, Cu and Pb for Different PH Values. J. Hazard. Mater.; 2008; 151, pp. 185-193. [DOI: https://dx.doi.org/10.1016/j.jhazmat.2007.05.070]
232. Fang, L.; Wei, X.; Cai, P.; Huang, Q.; Chen, H.; Liang, W.; Rong, X. Role of Extracellular Polymeric Substances in Cu(II) Adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour. Technol.; 2011; 102, pp. 1137-1141. [DOI: https://dx.doi.org/10.1016/j.biortech.2010.09.006]
233. Tálos, K.; Páger, C.; Tonk, S.; Majdik, C.; Kocsis, B.; Kilár, F.; Pernyeszi, T. Cadmium Biosorption on Native Saccharomyces cerevisiae Cells in Aqueous Suspension. Acta Univ. Sapientiae Agric. Environ.; 2009; 1, pp. 20-30.
234. Tigini, V.; Prigione, V.; Giansanti, P.; Mangiavillano, A.; Pannocchia, A.; Varese, G.C. Fungal Biosorption, an Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents. Water; 2010; 2, pp. 550-565. [DOI: https://dx.doi.org/10.3390/w2030550]
235. Pinedo-Rivilla, C.; Aleu, J.; Collado, I. Pollutants Biodegradation by Fungi. Curr. Org. Chem.; 2009; 13, pp. 1194-1214. [DOI: https://dx.doi.org/10.2174/138527209788921774]
236. Gómez Jiménez-T, R.; Moliterni, E.; Rodríguez, L.; Fernández, F.J.; Villaseñor, J. Feasibility of Mixed Enzymatic Complexes to Enhanced Soil Bioremediation Processes. Procedia Environ. Sci.; 2011; 9, pp. 54-59. [DOI: https://dx.doi.org/10.1016/j.proenv.2011.11.010]
237. Penny, C.; Vuilleumier, S.; Bringel, F. Microbial Degradation of Tetrachloromethane: Mechanisms and Perspectives for Bioremediation. FEMS Microbiol. Ecol.; 2010; 74, pp. 257-275. [DOI: https://dx.doi.org/10.1111/j.1574-6941.2010.00935.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20695893]
238. Shahjahan, M.; Islam, S.M.M.; Bablee, A.L.; Siddik, M.A.B.; Fotedar, R. Sumithion Usage in Aquaculture: Benefit or Forfeit?. Rev. Aquac.; 2021; 13, pp. 2092-2111. [DOI: https://dx.doi.org/10.1111/raq.12560]
239. Sone, Y.; Mochizuki, Y.; Koizawa, K.; Nakamura, R.; Pan-Hou, H.; Itoh, T.; Kiyono, M. Mercurial-Resistance Determinants in Pseudomonas Strain K-62 Plasmid PMR68. AMB Express; 2013; 3, pp. 1-7. [DOI: https://dx.doi.org/10.1186/2191-0855-3-41]
240. Vutukuru, S.S.; Arun Prabhath, N.; Raghavender, M.; Yerramilli, A. Effect of Arsenic and Chromium on the Serum Amino-Transferases Activity in Indian Major Carp, Labeo rohita. Int. J. Environ. Res. Public Health; 2007; 4, pp. 224-227. [DOI: https://dx.doi.org/10.3390/ijerph2007030005]
241. Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Send Orders for Reprints to
242. Patowary, K.; Patowary, R.; Kalita, M.C.; Deka, S. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites. Front. Microbiol.; 2016; 7, pp. 1-14. [DOI: https://dx.doi.org/10.3389/fmicb.2016.01092] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27471499]
243. Jin, Y.; Luan, Y.; Ning, Y.; Wang, L. Effects and Mechanisms of Microbial Remediation of Heavy Metals in Soil: A Critical Review. Appl. Sci.; 2018; 8, 1336. [DOI: https://dx.doi.org/10.3390/app8081336]
244. Luptakova, A.; Kusnierova, M. Bioremediation of Acid Mine Drainage Contaminated by SRB. Hydrometallurgy; 2005; 77, pp. 97-102. [DOI: https://dx.doi.org/10.1016/j.hydromet.2004.10.019]
245. Bruschi, M.; Goulhen, F. New bioremediation technologies to remove heavy metals and radionuclides using Fe(III)-sulfate- and sulfur reducing bacteria. Environmental Bioremediation Technologies; Singh, S.N.; Tripathi, R.D. Springer Publication: New York, NY, USA, 2007; pp. 35-55. [DOI: https://dx.doi.org/10.1007/978-3-540-34793-4_2]
246. Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for Remediation of Heavy Metals: Current Status and Their Future Prospects. Environ. Eng. Res.; 2015; 20, pp. 1-18. [DOI: https://dx.doi.org/10.4491/eer.2015.018]
247. Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front. Plant Sci.; 2016; 7, pp. 1-12. [DOI: https://dx.doi.org/10.3389/fpls.2016.00755]
248. Bisht, J.; Harsh, N.S.K. Utilizing Aspergillus Niger for Bioremediation of Tannery Effluent. Octa J. Environ. Res.; 2014; 2, pp. 77-81.
249. Taniguchi, J.; Hemmi, H.; Tanahashi, K.; Amano, N.; Nakayama, T.; Nishino, T. Zinc Biosorption by a Zinc-Resistant Bacterium, Brevibacterium sp. Strain HZM-1. Appl. Microbiol. Biotechnol.; 2000; 54, pp. 581-588. [DOI: https://dx.doi.org/10.1007/s002530000415] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11092636]
250. Pardo, R.; Herguedas, M.; Barrado, E.; Vega, M. Biosorption of Cadmium, Copper, Lead and Zinc by Inactive Biomass of Pseudomonas putida. Anal. Bioanal. Chem.; 2003; 376, pp. 26-32. [DOI: https://dx.doi.org/10.1007/s00216-003-1843-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12734614]
251. Singh, N.; Verma, T.; Gaur, R. Detoxification of Hexavalent Chromium by an Indigenous Facultative Anaerobic Bacillus cereus Strain Isolated from Tannery Effluent. African J. Biotechnol.; 2013; 12, pp. 1091-1103. [DOI: https://dx.doi.org/10.5897/AJB12.1636]
252. Kim, I.H.; Choi, J.H.; Joo, J.O.; Kim, Y.K.; Choi, J.W.; Oh, B.K. Development of a Microbe-Zeolite Carrier for the Effective Elimination of Heavy Metals from Seawater. J. Microbiol. Biotechnol.; 2015; 25, pp. 1542-1546. [DOI: https://dx.doi.org/10.4014/jmb.1504.04067]
253. Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front. Microbiol.; 2022; 13, 824084. [DOI: https://dx.doi.org/10.3389/fmicb.2022.824084]
254. de Lorenzo, V. Recombinant Bacteria for Environmental Release: What Went Wrong and What We Have Learnt from It. Clin. Microbiol. Infect.; 2009; 15, pp. 63-65. [DOI: https://dx.doi.org/10.1111/j.1469-0691.2008.02683.x]
255. Bhatt, P.; Sethi, K.; Gangola, S.; Bhandari, G.; Verma, A.; Adnan, M.; Singh, Y.; Chaube, S. Modeling and Simulation of Atrazine Biodegradation in Bacteria and Its Effect in Other Living Systems. J. Biomol. Struct. Dyn.; 2020; 40, pp. 3285-3295. [DOI: https://dx.doi.org/10.1080/07391102.2020.1846623]
256. D’Souza, S.F. Microbial Biosensors. Biosens. Bioelectron.; 2001; 16, pp. 337-353. [DOI: https://dx.doi.org/10.1016/S0956-5663(01)00125-7]
257. Verma, N.; Singh, M. Biosensors for Heavy Metals. BioMetals; 2005; 18, pp. 121-129. [DOI: https://dx.doi.org/10.1007/s10534-004-5787-3]
258. Azad, M.A.K.; Amin, L.; Sidik, N.M. Genetically Engineered Organisms for Bioremediation of Pollutants in Contaminated Sites. Chinese Sci. Bull.; 2014; 59, pp. 703-714. [DOI: https://dx.doi.org/10.1007/s11434-013-0058-8]
259. Subashchandrabose, S.R.; Venkateswarlu, K.; Krishnan, K.; Naidu, R.; Lockington, R.; Megharaj, M. Rhodococcus wratislaviensis Strain 9: An Efficient p-Nitrophenol Degrader with a Great Potential for Bioremediation. J. Hazard. Mater.; 2018; 347, pp. 176-183. [DOI: https://dx.doi.org/10.1016/j.jhazmat.2017.12.063]
260. Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial Mercury Resistance from Atoms to Ecosystems. FEMS Microbiol. Rev.; 2003; 27, pp. 355-384. [DOI: https://dx.doi.org/10.1016/S0168-6445(03)00046-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12829275]
261. Rojas, L.A.; Yáñez, C.; González, M.; Lobos, S.; Smalla, K.; Seeger, M. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation. PloS ONE; 2011; 6, e17555. [DOI: https://dx.doi.org/10.1371/journal.pone.0017555] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21423734]
262. Yu, L.; Zhai, Q.; Zhu, J.; Zhang, C.; Li, T.; Liu, X.; Zhao, J.; Zhang, H.; Tian, F.; Chen, W. Dietary Lactobacillus plantarum Supplementation Enhances Growth Performance and Alleviates Aluminum Toxicity in Tilapia. Ecotoxicol. Environ. Saf.; 2017; 143, pp. 307-314. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2017.05.023]
263. Zhai, Q.; Yu, L.; Li, T.; Zhu, J.; Zhang, C.; Zhao, J.; Zhang, H.; Chen, W. Effect of Dietary Probiotic Supplementation on Intestinal Microbiota and Physiological Conditions of Nile Tilapia (Oreochromis niloticus) under Waterborne Cadmium Exposure. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.; 2016; 110, pp. 501-513. [DOI: https://dx.doi.org/10.1007/s10482-016-0819-x]
264. Ramadan, A.; Shalaby, A.; El Gammal, M.; El Aganif, E.-S.M.E.A.; Ebrahim, M. Beneficial Using of EDTA to Reduce Cadmium Toxicity and to Improve the Physiological and Biochemical Profiles of Catfish (Clarias gariepinus). Egypt. J. Aquac.; 2011; 1, pp. 55-69. [DOI: https://dx.doi.org/10.21608/eja.2011.32050]
265. El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Bioremediation Effect of Pomegranate Peel on Subchronic Mercury Immunotoxicity on African Catfish (Clarias gariepinus). Environ. Sci. Pollut. Res.; 2021; 28, pp. 2219-2235. [DOI: https://dx.doi.org/10.1007/s11356-020-10599-1]
266. El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Chelation of Mercury Intoxication and Testing Different Protective Aspects of Lactococcus lactis Probiotic in African Catfish. Aquac. Res.; 2021; 52, pp. 3815-3828. [DOI: https://dx.doi.org/10.1111/are.15227]
267. Giri, S.S.; Jun, J.W.; Yun, S.; Kim, H.J.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Han, S.J.; Park, S.C.; Sukumaran, V. Characterisation of Lactic Acid Bacteria Isolated from the Gut of Cyprinus carpio That May Be Effective Against Lead Toxicity. Probiotics Antimicrob. Proteins; 2019; 11, pp. 65-73. [DOI: https://dx.doi.org/10.1007/s12602-017-9367-6]
268. Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv.; 2009; 27, pp. 195-226. [DOI: https://dx.doi.org/10.1016/j.biotechadv.2008.11.002]
269. De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol.; 2008; 10, pp. 471-477. [DOI: https://dx.doi.org/10.1007/s10126-008-9083-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18288535]
270. Puyen, Z.M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of Lead and Copper by Heavy-Metal Tolerant Micrococcus luteus DE2008. Bioresour. Technol.; 2012; 126, pp. 233-237. [DOI: https://dx.doi.org/10.1016/j.biortech.2012.09.036] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23073113]
271. Abioye, O.P.; Oyewole, O.A.; Oyeleke, S.B.; Adeyemi, M.O.; Orukotan, A.A. Biosorption of Lead, Chromium and Cadmium in Tannery Effluent Using Indigenous Microorganisms. Brazilian J. Biol. Sci.; 2018; 5, pp. 25-32. [DOI: https://dx.doi.org/10.21472/bjbs.050903]
272. Gawali Ashruta, A.; Nanoty, V.; Bhalekar, U. Biosorption of Heavy Metals from Aqueous Solution Using Bacterial EPS. Int. J. Life Sci.; 2014; 2, pp. 373-377.
273. Akar, T.; Tunali, S.; Kiran, I. Botrytis Cinerea as a New Fungal Biosorbent for Removal of Pb(II) from Aqueous Solutions. Biochem. Eng. J.; 2005; 25, pp. 227-235. [DOI: https://dx.doi.org/10.1016/j.bej.2005.05.006]
274. Fu, Y.-Q. Biosorption of Copper (II) from Aqueous Solution by Mycelial Pellets of Rhizopus oryzae. Afr. J. Biotechnol.; 2012; 11, pp. 1403-1411. [DOI: https://dx.doi.org/10.5897/ajb11.2809]
275. Karakagh, R.M.; Chorom, M.; Motamedi, H.; Kalkhajeh, Y.K.; Oustan, S. Biosorption of Cd and Ni by Inactivated Bacteria Isolated from Agricultural Soil Treated with Sewage Sludge. Ecohydrol. Hydrobiol.; 2012; 12, pp. 191-198. [DOI: https://dx.doi.org/10.1016/S1642-3593(12)70203-3]
276. Tiwari, S.; Singh, S.N.; Garg, S.K. Microbially Enhanced Phytoextraction of Heavy-Metal Fly-Ash Amended Soil. Commun. Soil Sci. Plant Anal.; 2013; 44, pp. 3161-3176. [DOI: https://dx.doi.org/10.1080/00103624.2013.832287]
277. Srivastava, S.; Thakur, I.S. Isolation and Process Parameter Optimization of Aspergillus Sp. for Removal of Chromium from Tannery Effluent. Bioresour. Technol.; 2006; 97, pp. 1167-1173. [DOI: https://dx.doi.org/10.1016/j.biortech.2005.05.012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16023341]
278. Park, D.; Yun, Y.S.; Jo, J.H.; Park, J.M. Mechanism of Hexavalent Chromium Removal by Dead Fungal Biomass of Aspergillus niger. Water Res.; 2005; 39, pp. 533-540. [DOI: https://dx.doi.org/10.1016/j.watres.2004.11.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15707625]
279. Lakkireddy, K.; Kües, U. Bulk Isolation of Basidiospores from Wild Mushrooms by Electrostatic Attraction with Low Risk of Microbial Contaminations. AMB Express; 2017; 7, pp. 1-22. [DOI: https://dx.doi.org/10.1186/s13568-017-0326-0]
280. Dönmez, G.; Aksu, Z. Bioaccumulation of Copper(Ii) and Nickel(Ii) by the Non-Adapted and Adapted Growing Candida sp. Water Res.; 2001; 35, pp. 1425-1434. [DOI: https://dx.doi.org/10.1016/S0043-1354(00)00394-8]
281. Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Biosurfactant from Candida Sphaerica UCP0995 Exhibiting Heavy Metal Remediation Properties. Process Saf. Environ. Prot.; 2016; 102, pp. 558-566. [DOI: https://dx.doi.org/10.1016/j.psep.2016.05.010]
282. Ksheminska, H.P.; Honchar, T.M.; Gayda, G.Z.; Gonchar, M.V. Extra-Cellular Chromate-Reducing Activity of the Yeast Cultures. Cent. Eur. J. Biol.; 2006; 1, pp. 137-149. [DOI: https://dx.doi.org/10.2478/s11535-006-0009-3]
283. Ksheminska, H.; Fedorovych, D.; Honchar, T.; Ivash, M.; Gonchar, M. Yeast Tolerance to Chromium Depends on Extracellular Chromate Reduction and Cr(III) Chelation. Food Technol. Biotechnol.; 2008; 46, pp. 419-426.
284. Chatterjee, S.; Chatterjee, N.C.; Dutta, S. Bioreduction of Chromium (VI) to Chromium (III) by a Novel Yeast Strain Rhodotorula mucilaginosa (MTCC 9315). African J. Biotechnol.; 2012; 11, pp. 14920-14929. [DOI: https://dx.doi.org/10.5897/AJB12.1899]
285. Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of Heavy Metals: A Review. J. Chem. Sci. Technol.; 2014; 3, pp. 74-102.
286. Kumar, A.; Nath, A.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Kumar, K.; Kumar, G.; Cabral-pinto, M. et al. Chemosphere Myco-Remediation: A Mechanistic Understanding of Contaminants Alleviation from Natural Environment and Future Prospect. Chemosphere; 2021; 284, 131325. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2021.131325]
287. Anastopoulos, I.; Kyzas, G.Z. Progress in Batch Biosorption of Heavy Metals onto Algae. J. Mol. Liq.; 2015; 209, pp. 77-86. [DOI: https://dx.doi.org/10.1016/j.molliq.2015.05.023]
288. Park, D.; Reed, D.W.; Yung, M.; Eslamimanesh, A.; Lencka, M.M.; Fujita, Y.; Riman, R.E.; Navrotsky, A.; Jiao, Y. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide. Environ. Sci. Technol.; 2016; 50, pp. 2735-2742. [DOI: https://dx.doi.org/10.1021/acs.est.5b06129] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26836847]
289. Mantzorou, A.; Navakoudis, E.; Paschalidis1, K.; Ververidis, F. Microalgae: A Potential Tool for Remediating Aquatic Environments from Toxic Metals. Int. J. Environ. Sci. Technol.; 2018; 15, pp. 1815-1830. [DOI: https://dx.doi.org/10.1007/s13762-018-1783-y]
290. Klapheck, S.; Schlunz, S.; Bergmann, L. Synthesis of Phytochelatins and Homo-Phytochelatins in Pisum Sativum L. Plant Physiol.; 1995; 107, pp. 515-521. [DOI: https://dx.doi.org/10.1104/pp.107.2.515] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12228379]
291. Chen, J.; Zhou, J.; Goldsbrough, P.B. Characterization of Phytochelatin Synthase from Tomato. Physiol. Plant.; 1997; 101, pp. 165-172. [DOI: https://dx.doi.org/10.1111/j.1399-3054.1997.tb01833.x]
292. Perales-Vela, H.V.; Peña-Castro, J.M.; Cañizares-Villanueva, R.O. Heavy Metal Detoxification in Eukaryotic Microalgae. Chemosphere; 2006; 64, pp. 1-10. [DOI: https://dx.doi.org/10.1016/j.chemosphere.2005.11.024]
293. He, J.; Chen, J.P. A Comprehensive Review on Biosorption of Heavy Metals by Algal Biomass: Materials, Performances, Chemistry, and Modeling Simulation Tools. Bioresour. Technol.; 2014; 160, pp. 67-78. [DOI: https://dx.doi.org/10.1016/j.biortech.2014.01.068]
294. Goher, M.E.; El-Monem, A.M.A.; Abdel-Satar, A.M.; Ali, M.H.; Hussian, A.E.M.; Napiórkowska-Krzebietke, A. Biosorption of Some Toxic Metals from Aqueous Solution Using Non-Living Algal Cells of Chlorella vulgaris. J. Elem.; 2016; 21, pp. 703-714. [DOI: https://dx.doi.org/10.5601/jelem.2015.20.4.1037]
295. Kumar, N.; Gupta, S.K.; Chandan, N.K.; Bhushan, S.; Singh, D.K.; Kumar, P.; Kumar, P.; Wakchaure, G.C.; Singh, N.P. Mitigation Potential of Selenium Nanoparticles and Riboflavin against Arsenic and Elevated Temperature Stress in Pangasianodon hypophthalmus. Sci. Rep.; 2020; 10, pp. 1-18. [DOI: https://dx.doi.org/10.1038/s41598-020-74911-2]
296. El-Sayed, Y.S.; El-Gazzar, A.M.; El-Nahas, A.F.; Ashry, K.M. Vitamin C Modulates Cadmium-Induced Hepatic Antioxidants’ Gene Transcripts and Toxicopathic Changes in Nile Tilapia, Oreochromis niloticus. Environ. Sci. Pollut. Res.; 2016; 23, pp. 1664-1670. [DOI: https://dx.doi.org/10.1007/s11356-015-5412-8]
297. Shalaby, A.M.E. Effect of EDTA on Toxicity Reduction of Cadmium in Relation to Growth, Some Haematological and Biochemical Profiles of Nile Tilapia (Oreochromis niloticus). J. Fish. Aquat. Sci.; 2007; 2, pp. 100-109. [DOI: https://dx.doi.org/10.3923/jfas.2007.100.109]
298. Nicula, M.; Bǎnǎţean-Dunea, I.; Gergen, I.; Hǎrmǎnescu, M.; Simiz, E.; Pǎtruicǎ, S.; Polen, T.; Marcu, A.; Lunca, M.; Szucs, S. Effect of Natural Zeolite on Reducing Tissue Bioaccumulation and Cadmium Antagonism Related to Some Mineral Micro- and Macronutrients in Prussian Carp (Carassius gibelio). AACL Bioflux; 2010; 3, pp. 171-179.
299. El Deen, A.E.N.; Zaki, M.S.; Osman, H.A. Role of Fulvic Acid on the Reduction of Cadmium Toxicity on Tilapia (Oreochromis niloticus). WIT Trans. Ecol. Environ.; 2010; 132, pp. 155-162. [DOI: https://dx.doi.org/10.2495/ETOX100151]
300. Sharpe, D.V.; Fana, L.; Hansen, L.T.; Doucette, C.; Waddington, L.M.; Fillmore, S. Antimicrobial Activity of Bacteriocin-like Substances Producing Lactic Acid Bacteria, Isolated from Commercial Vegetable Produce. J. Antimicrob.; 2013; 128, pp. 257-268.
301. James, R.; Sampath, K. Removal of Copper Toxicity by Zeolite in Java Tilapia Oreochromis mossambicus (Peters). Bull. Environ. Contam. Toxicol.; 2003; 71, pp. 1184-1191. [DOI: https://dx.doi.org/10.1007/s00128-003-8756-6]
302. James, R.; Sampath, K.; Selvamani, P. Effect of EDTA on Reduction of Copper Toxicity in Oreochromis mossambicus (Peters). Bull. Environ. Contam. Toxicol.; 1998; 60, pp. 487-493. [DOI: https://dx.doi.org/10.1007/s001289900651]
303. Kaoud, H.A.; Mahran, K.M.A.; Ahmed, R.; Mahmoud, A. Khalf Bioremediation the Toxic Effect of Mercury on Liver Histopathology, Some Hematological Parameters and Enzymatic Activity in Nile Tilapia, Oreochromis niloticus. Researcher; 2012; 4, pp. 60-69.
304. El-Shebly, A.A. Protection of Nile Tilapia (Oreochromis niloticus) from Lead Pollution and Enhancement of Its Growth by á-Tocopherol Vitamin E. Res. J. Fish. Hydrobiol.; 2009; 4, pp. 17-21.
305. Tanekhy, M. Lead Poisoning in Nile Tilapia (Oreochromis niloticus): Oxidant and Antioxidant Relationship. Environ. Monit. Assess.; 2015; 187, pp. 1-13. [DOI: https://dx.doi.org/10.1007/s10661-015-4387-8]
306. Vettrivel, C.; Pugazhendy, K.; Meenambal, M.; Jayanthi, C. Curative Efficacy of Spirulina against Lead Acetate Toxicity on the Cyprinus carpio (Linn). Fresh Water Fish; 2013; 4, pp. 537-542.
307. Mishra, M.; Jain, S.K. Effect of Natural Ion Exchanger Chabazite for Remediation of Lead Toxicity: An Experimental Study in Teleost Fish Heteropneustes fossilis. Asian J. Exp. Sci.; 2009; 23, pp. 39-44.
308. Harabawy, A.S.A.; Mosleh, Y.Y.I. The Role of Vitamins A, C, E and Selenium as Antioxidants against Genotoxicity and Cytotoxicity of Cadmium, Copper, Lead and Zinc on Erythrocytes of Nile Tilapia, Oreochromis niloticus. Ecotoxicol. Environ. Saf.; 2014; 104, pp. 28-35. [DOI: https://dx.doi.org/10.1016/j.ecoenv.2014.02.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24632120]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
2 Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
3 Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
4 Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia;
5 College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines;
6 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia