Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.

Details

Title
Underwater Target Detection Utilizing Polarization Image Fusion Algorithm Based on Unsupervised Learning and Attention Mechanism
Author
Cheng, Haoyuan 1 ; Zhang, Deqing 1 ; Zhu, Jinchi 1 ; Yu, Hao 2 ; Chu, Jinkui 2   VIAFID ORCID Logo 

 College of Engineering, Ocean University of China, Qingdao 266100, China; [email protected] (D.Z.); [email protected] (J.Z.) 
 Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; [email protected] (H.Y.); [email protected] (J.C.) 
First page
5594
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829874962
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.