Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate real-time gait event detection is the basis for the development of new gait rehabilitation techniques, especially when utilizing robotics or virtual reality (VR). The recent emergence of affordable wearable technologies, especially inertial measurement units (IMUs), has brought forth various new methods and algorithms for gait analysis. In this paper, we highlight some advantages of using adaptive frequency oscillators (AFOs) over traditional gait event detection algorithms, implemented a real-time AFO-based algorithm that estimates the gait phase from a single head-mounted IMU, and validated our method on a group of healthy subjects. Gait event detection was accurate at two different walking speeds. The method was reliable for symmetric, but not asymmetric gait patterns. Our method could prove especially useful in VR applications since a head-mounted IMU is already an integral part of commercial VR products.

Details

Title
Real-Time Gait Event Detection with Adaptive Frequency Oscillators from a Single Head-Mounted IMU
Author
Tomc, Matej 1   VIAFID ORCID Logo  ; Matjačić, Zlatko 1   VIAFID ORCID Logo 

 University Rehabilitation Institute Republic of Slovenia Soča, Linhartova 51, 1000 Ljubljana, Slovenia; [email protected]; Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia 
First page
5500
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829876303
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.