Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The official launch of the Chinese BeiDou Navigation Satellite System with global coverage (BDS-3) presents significant opportunities for various applications, including precision agriculture and autonomous driving, among others. With its global spatial coverage and hybrid space constellation comprising geosynchronous Earth orbit (GEO), inclined geosynchronous orbit (IGSO), and medium Earth orbit (MEO) satellites, BDS can significantly contribute to various GNSS remote sensing applications that require real-time, precise water surface height measurements with high temporal and spatial resolution, such as in tidal monitoring. In this paper, we propose a carrier-phase-based method for BDS Reflectometry (BDS-R) to precisely retrieve real-time water surface height. Firstly, the BDS-R altimetry method is introduced, along with a detailed explanation of the data processing procedures. Secondly, a quality control method tailored to the characteristics of low-cost BDS devices is developed. Thirdly, a land altimetry experiment is conducted to evaluate the precision of BDS-R and analyze the specific contribution of the BDS hybrid constellation. Finally, a water surface altimetry experiment validates the real-time monitoring capabilities for low-cost BDS-R. The results indicate that low-cost BDS-R can achieve real-time centimeter-level water level monitoring with a temporal resolution of 1 s in lakefront environments. The performance of BDS-R can be significantly improved by the BDS hybrid constellation, particularly IGSOs. It is concluded that low-cost BDS-R has great potential for promoting ground-based GNSS remote sensing applications.

Details

Title
Low-Cost BDS Reflectometry for Real-Time Water Surface Retrieval
Author
Deng, Ken; Zhou, Peiyuan; Du, Lan; Zhang, Zhongkai; Liu, Zejun
First page
3073
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829884239
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.