It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recognition of human intention is crucial and challenging due to subtle motion patterns of a series of action evolutions. Understanding of human actions is the foundation of many applications, i.e., human robot interaction, smart video monitoring and autonomous driving etc. Existing deep learning methods use either spatial or temporal features during training. This research focuses on developing a lightweight method using both spatial and temporal features to predict human intention correctly. This research proposes Convolutional Long Short-Term Deep Network (CLSTDN) consists of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). CNN uses Inception-ResNet-v2 to classify object specific class categories by extracting spatial features and RNN uses Long Short-Term Memory (LSTM) for final prediction based on temporal features. Proposed method was validated on four challenging benchmark dataset, i.e., UCF Sports, UCF-11, KTH and UCF-50. Performance of the proposed method was evaluated using seven performance metrics, i.e., accuracy, precision, recall, f-measure, error rate, loss and confusion matrix. Proposed method showed better results comparing with existing research results. Proposed method is expected to encourage researchers to use in future for real time implications to predict human intentions more robustly.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer