Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Boreal peatlands store ~25 % of global soil organic carbon and host many endangered species; however, they face degradation due to climate change and anthropogenic drainage. In boreal peatlands, vegetation indicates ecohydrological conditions of the ecosystem. Applying remote sensing would enable spatially and temporally continuous monitoring of peatland vegetation. New multi- and hyperspectral satellite data offer promising approaches for understanding the spectral properties of peatland vegetation at high temporal and spectral resolutions. However, using spectral satellite data to their fullest potential requires detailed spectral analyses of dominant species in peatlands. A dominant feature of peatland vegetation is the genus Sphagnum mosses. We investigated how the reflectance spectra of common boreal Sphagnum mosses, collected from waterlogged natural conditions after snowmelt, change when the mosses are desiccated. We conducted a laboratory experiment where the reflectance spectra (350–2500 nm) and the mass of 90 moss samples (representing nine species) were measured repetitively. Furthermore, we examined (i) their inter- and intraspecific spectral differences and (ii) whether the species or their respective habitats could be identified based on their spectral signatures in varying states of drying. Our findings show that the most informative spectral regions to retrieve information about the Sphagnum species and their state of desiccation are in the shortwave infrared region. Furthermore, the visible and near-infrared spectral regions contain less information on species and moisture content. Our results also indicate that hyperspectral data can, to a limited extent, be used to separate mosses belonging to meso- and ombrotrophic habitats. Overall, this study demonstrates the importance of including data especially from the shortwave infrared region (1100–2500 nm) in remote sensing applications of boreal peatlands. The spectral library of Sphagnum mosses collected in this study is available as open data and can be used to develop new methods for remote monitoring of boreal peatlands.

Details

Title
Intra- and interspecific variation in spectral properties of dominant Sphagnum moss species in boreal peatlands
Author
Sini-Selina Salko 1   VIAFID ORCID Logo  ; Juola, Jussi 1   VIAFID ORCID Logo  ; Burdun, Iuliia 1 ; Vasander, Harri 2 ; Rautiainen, Miina 1   VIAFID ORCID Logo 

 School of Engineering, Aalto University, Espoo, Finland 
 Department of Forest Sciences, University of Helsinki, Helsinki, Finland 
Section
RESEARCH ARTICLES
Publication year
2023
Publication date
Jun 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2830562516
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.