It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Salt caverns have been successfully used for natural gas storage globally since the 1940s and are now under consideration for hydrogen (H2) storage, which is needed in large quantities to decarbonize the economy to finally reach a net zero by 2050. Salt caverns are not sterile and H2 is a ubiquitous electron donor for microorganisms. This could entail that the injected H2 will be microbially consumed, leading to a volumetric loss and potential production of toxic H2S. However, the extent and rates of this microbial H2 consumption under high-saline cavern conditions are not yet understood. To investigate microbial consumption rates, we cultured the halophilic sulphate-reducing bacteria Desulfohalobium retbaense and the halophilic methanogen Methanocalculus halotolerans under different H2 partial pressures. Both strains consumed H2, but consumption rates slowed down significantly over time. The activity loss correlated with a significant pH increase (up to pH 9) in the media due to intense proton- and bicarbonate consumption. In the case of sulphate reduction, this pH increase led to dissolution of all produced H2S in the liquid phase. We compared these observations to a brine retrieved from a salt cavern located in Northern Germany, which was then incubated with 100% H2 over several months. We again observed a H2 loss (up to 12%) with a concurrent increase in pH of up to 8.5 especially when additional nutrients were added to the brine. Our results clearly show that sulphate-reducing microbes present in salt caverns consume H2, which will be accompanied by a significant pH increase, resulting in reduced activity over time. This potentially self-limiting process of pH increase during sulphate-reduction will be advantageous for H2 storage in low-buffering environments like salt caverns.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 NORCE Norwegian Research Center AS, Bergen, Norway (GRID:grid.509009.5)
2 Equinor ASA, Stavanger, Norway (GRID:grid.422595.d) (ISNI:0000 0004 0467 7043)