It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Elastic lateral-torsional buckling of double-tee section structural steelworks has been widely investigated with regard to the major axis bending of single structural elements as a result of certain loading conditions. No specific attention has been paid to the general formulation in which an arbitrary span load pattern was associated with unequal end moments as a result of the moment distribution between structural members of the load bearing system.Anumber of analytical solutionswere developed on the basis of the Vlasov theory of thin-walled members. Since the accurate closed-form solutions of lateral-torsional buckling (LTB) of beams may only be obtained for simple loading and boundary conditions, more complex situations are treated nowadays by using numerical finite element methods (FEM). Analytical and numerical methods are frequently combined for the purpose of: a) verification of approximate analytical formulae or b) presentation the results in the form of multiple curve nomograms to be used in design practice. Investigations presented in this paper deal with the energy method applied to LTB of any complex loading condition of elements of simple end boundary conditions, bent about the major axis. Firstly, a brief summary of the second-order based energy equation dealt with in this paper is presented and followed by its approximate solution using the so-called refined energy method that in the case of LTB coincides with the Timoshenko’s energy refinement. As a result, the LTB energy equation shape functions of twist rotation and minor axis displacement are chosen such that they cover both the symmetric and antisymmetric lateral-torsional buckling modes. The latter modes are chosen in relation to two lowest LTB eigenmodes of beams under uniform major axis bending. Finally, the explicit form of the general solution is presented as being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the in-span loads. Solutions based on the present investigations are compared for selected loading conditions with those obtained in the previous studies and verified with use of the LTBeam software. Conclusions are drawn with regard to the application of obtained closed-form solutions in engineering practice.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer