Introduction
Studies regarding the etiology of male infertility have revealed that at least 15% of cases have a clear immunological origin, a share that is most likely underestimated if idiopathic infertilities were to be included (Dohle et al., 2005; Jungwirth et al., 2012). In the male, they may be the result of chronic inflammatory situations, acute bacterial and/or viral infections, or autoimmune processes along the genital tract leading to the production of anti-sperm antibodies (for a recent review, see Shibahara et al., 2021). These situations are difficult to diagnose and treat, in part because our knowledge of immune/inflammatory responses in male accessory organs is limited. Among the accessory organs, the epididymis plays an essential role in the maturation, storage, and protection of spermatozoa. A particularity of the mammalian epididymis is its highly segmented anatomical organization with three macroscopic territories (caput, corpus, and cauda as depicted in Figure 2), themselves sectorized into segments (10 for the mouse model, see Figure 2), some of which have distinct functional roles (Turner et al., 2003; Johnston et al., 2005). Unlike the testis, where mammalian evolution has chosen to tightly seal the germline from the immune system—conferring immune privilege to this tissue (Meinhardt and Hedger, 2011)—the epididymis tubule faces multiple immune challenges (Guiton et al., 2013; Hedger, 2011). On the one hand, the epididymis tubule is the testis gatekeeper, preventing ascending pathogens from reaching the immune-privileged seminiferous tubules. To do so, it should be endowed with all the power of a full and efficient immune response toward exogeneous antigens. On the other hand, the epididymis must maintain self-tolerance toward spermatic antigens that are unique to this cell lineage and appear at puberty long after the establishment of the self-immune repertoire (Goodnow, 1996). Understanding how this dual action of peripheral tolerance toward sperm antigens (Mueller, 2010) versus efficient immune survey toward non-self-antigens is performed is of particular interest for infertility issues, but also more largely in other settings where this situation occurs. This has prompted recent research aiming at identifying immune cells and molecules that could participate in the finely orchestrated epididymal immune physiology. This research has led to the characterization of a dense network of peritubular antigen-presenting cells (Da Silva et al., 2011), interstitial and intra-epithelial lymphocytes of distinct sub-families (Voisin et al., 2018), as well as of immunosuppressive players such as transforming growth factor beta (Pierucci-Alves et al., 2018; Voisin et al., 2020) and indoleamine/tryptophane dioxygenase activity (Britan et al., 2006; Jrad-Lamine et al., 2011; Jrad-Lamine et al., 2013).
Because the immune picture of the mammalian epididymis would not be complete without a clear view of the blood and lymphatic circulating networks—which are crucial in managing immune responses—we choose to explore these in the mouse. Reports describing mammalian epididymal blood and lymphatic vessels are rare and rather old (Pérez-Clavier et al., 1982; Abe et al., 1984; McDonald and Scothorne, 1988; Itoh et al., 1998). The technology used was not very efficient and consisted mainly of ink or contrast agent injection. It concerned only the peripheral epididymal lymphatic network with the organization of the collectors connecting the PP. More recently, Hirai et al., 2010, performed the first histological study of mouse epididymal blood and lymphatic vasculature using the markers CD31/PECAM1 and LYVE1, respectively. Although PECAM1 is used to visualize blood vessels, it is not an exclusive blood marker because it is also found expressed at button-like junctions of endothelial cells in the initial lymphatics (Privratsky and Newman, 2014). Furthermore, to characterize lymphatics, the use of LYVE1 alone limits the power of the analysis because this marker recognizes only a subpopulation of all lymphatics (Kato et al., 2006). In addition, conventional two-dimensional (2D) light microscopy combined with a horseradish peroxidase (HRP) reporter on paraffin-embedded tissue sections did not allow for a high level of accuracy in providing a holistic view of a structured network.
Characterization of the lymphatic vasculature in mammals is tricky because on the one hand, it shares common embryonic origins with the blood vessels (Baluk and McDonald, 2008; Srinivasan et al., 2007) and on the second hand, it concerns various different structures. There are blunted-end highly permeable initial lymphatics connected to pre-collector lymphatics and then to collector lymphatics linking to a lymph node (LN), each with specific characteristics (for a very recent review, see: Lampejo et al., 2023). A step forward was made with the identification of lymphangiogenic factors (vascular endothelial growth factors VEGF-C and VEGF-D) and their receptor (VEGFR3), which are now considered the major markers of lymphatics (Kaipainen et al., 1995; Mäkinen et al., 2001). To ensure confidence in the identification of lymphatic structures, one should use a combination of markers, including VEGFR3, the lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), the prospero-related homeobox 1 (PROX1) transcription factor, and podoplanin (PDPN) (Banerji et al., 1999; Breiteneder-Geleff et al., 1999; Hamrah et al., 2003; Kivelä et al., 2016; Mouta Carreira et al., 2001; Partanen et al., 2000; Wigle and Oliver, 1999). We have followed this rationale in the present study, using three lymphatic markers together with plasmalemma vesicle-associated protein (PLVAP/MECA32) to specifically identify fenestrated blood vessels (Stan et al., 2004). In addition, we have taken advantage of a transgenic mouse model that expresses the fluorescent reporter YFP under the control of the VEGFR3 promoter (Calvo et al., 2011). Using the power of three-dimensional (3D) reconstruction of high-resolution imaging with light-sheet microscopy after epididymis 3DISCO clearing (Belle et al., 2014; Ertürk et al., 2012), we present here an in-depth analysis of both the blood and lymphatic networks of the epididymis in the adult mouse as well as during postnatal ontogenesis. We hope the data we bring will provide a better view of the systemic compartment that irrigates and drains this segmented organ, a prerequisite for a more precise understanding of its pathophysiology.
Results
An abundant lymphatic network drains the epididymis
To gain insight into the lymphatic network of the mouse epididymis, we used the VEGFR3:YFP mouse model. Figure 1 shows representative in toto views of the lymphatic vascularization of the testis and epididymis of an adult (Figure 1A) and 10 days postnatal (DPN) mouse (Figure 1B, C). There is intense vascularization at the epididymis–testis interface regardless of the level of the epididymis (
Figure 1.
Macroscopic view of the lymphatic vasculature of the epididymis and testis in the VEGFR3:YFP model.
Representative image of the lymphatic vasculature of the adult epididymis and testis observed with a Leica binocular loupe (A). VEGFR3:YFPpos lymphatics are visible in the caput, corpus, and cauda regions. Lymphatics responsible for epididymal and testicular drainage follow the pampiniform plexus (PP) before reaching a lymph node (B). The superior and lateral epididymal lymphatic collectors (upperELC and medianELC, respectively) drain lymph from the caput and corpus, respectively, before joining the main testicular lymphatic collector at the PP. The latter is connected to a main collector that surrounds the testis (arrowhead) and branches into a rich network (A–C). There are numerous lymphatic connections between the lymphatics of the epididymis and the main lymphatic collector of the testis, notably through a lymphatic network at the level of the efferent ducts (φ in D), corpus (κ in E), and cauda (λ in F). Through the capsule covering the epididymal duct, there is also fluorescence that outlines the tubules, weakly in the caput (D) and more intense in the cauda (F and G). The scale bar corresponds to 1 mm. AT = adipose tissue; Ca = caput; Cd = cauda; Co = corpus; DD = deferent duct; DDA = deferent duct artery; DLC = deferent lymphatic collector; DPN = days postnatal; ED = efferent duct; LELC = lower epididymal lymphatic collector; LN; lymph node; P=pampiniform plexus; SEA = superior epididymal artery; Cd-BV = caudal blood vessel; SELC = superior epididymal lymphatic collector; T = testis; TA = testis artery; TLC = testicular lymphatic collector. ①=caput–testis lymphatic connection; ②=corpus–testis lymphatic connection; ③=cauda–testis lymphatic connections between testis and epididymis.
Complexity of the blood and lymphatic vascularization of the epididymis
Because fenestrated blood vessels also express VEGFR3, a marker specific for these vessels (PLVAP/Meca32) was used along with three additional markers for lymphatics, specifically LYVE1, PROX1, and PDPN. As the 3DISCO organ clearing procedures resulted in a loss of the endogenous transgene (VEGFR3:YFP) fluorescence, anti-GFP was used to strengthen the signal. The concordance of the labeling obtained with the anti-GFP and an anti-VEGFR3 antibodies was controlled (see Figure 2—figure supplement 1A). Similarly, Figure 2—figure supplement 1B and C show positive controls of the multiplex labeling as well as controls with the secondary antibody, respectively. Figure 2A and Figure 2—videos 1–3 show the immunoreactive vasculature after 3DISCO clearing of an adult mouse epididymis obtained after light-sheet imaging and IMARIS 3D reconstruction. The
Figure 2.
High-resolution three-dimensional (3D) imaging of the blood and lymphatic vasculature of the mouse epididymis after organ clearing.
(A) shows a schematic representation of the caput (red) and cauda (green) regionalization and segmentation commonly used to describe the mouse epididymis. (B) Representative multiplex immunostaining of the caput (left) and cauda (right) of the epididymis using five markers recognizing blood and lymphatic vessels is shown. An anti-MECA32 antibody (red) reveals PLVAPpos blood vessels, particularly fenestrated vessels. An anti-GFP antibody revealing the VEGFR3:YFP transgene (green) and an anti-LYVE1 antibody (cyan). Anti-LYVE1 (cyan), anti-PROX1 (magenta), and anti-PDPN (white) antibodies were used as additional lymphatic markers. After organ clearance, high-resolution 3D imaging was performed with a light-sheet ultramicroscope (LaVision BioTec). The two extreme segments, IS (initial segment or S1) and S10, are delineated by a large dashed line, whereas the caput (left) and cauda (right) regions are delineated by a small dashed line. The scale bar is 500 µm. The PLVAP image corresponds to the contro-lateral epididymis used for the four lymphatic markers since it is not possible to use all five markers on the same organ.
Figure 2—figure supplement 1.
Positive and negative immunohistochemical controls.
Panel A shows confocal views of multiplex labeling with the anti-GFP antibody (green) and the anti-mouse VEGFR3 antibody (red)on paraffin sections of an adult mouse epididymis, attesting that the two antibodies recognize the same structures. The scale bar is 20 µm. Panel B shows the compatibility of the four markers/dyes chosen for imaging blood and lymphatic vessels. Multiplex paraffin immunodetection of PLVAP/Alexa A555 (red), VEGFR3:YFP/GFP/Alexa A488 (green), LYVE1/Chromeo 494 (cyan), and PDPN/Alexa A647 (white) at the junction between the initial segment (IS)/S1 and the epididymal capsule. We noted the presence of fenestrated PLVAPpos blood vessels at the periphery of the epididymal tubule of the IS (white arrowheads). These are also positive for VEGFR3:YFP/GFP but negative for LYVE1 and PDPN, demonstrating that there is no cross-detection between the labeling revealed with Chromeo 494 and those revealed by Alexa 488, Alexa 555, and Alexa 647. The peripheral lymphatic vessels of the organ located in the capsule (LV) are negative for PLVAP and positive for the three lymphatic markers (VEGFR3:YFP/GFP, LYVE1, and PDPN). We noted the presence of intertubular blood vessels (*), which present heterogeneous labeling. The upper one is only PLVAPpos while the lower one is PLVAPpos and VEGFR3:YFPpos. In addition, note that the latter shows peripheral labeling for PDPN, while that is not the case for the upper one. A=artery. Panel C shows three-dimensional (3D) imaging obtained with a light-sheet ultramicroscope (LaVision Biotech) of the clarified epididymis caput and cauda after whole-mount incubation with the different dyes used to reveal the blood and lymphatic markers (Alexa 488 [green], Alexa 555 [red] Chromeo 494 [cyan], and Alexa 647 [white]).
Figure 2—figure supplement 2.
Three-dimensional (3D) view of blood and lymphatic vascularization of whole epididymis after 3DISCO clarification.
Panel A shows representative 3D views of an epididymis of an adult VEGFR3:YFP transgenic mouse obtained by light-sheet ultramicroscopy (LaVision Biotech, 2× resolution) after immunodetection using the blood marker Meca32/PLVAP (red, left panel) or the lymphatic VEGFR3:YFP transgene, revealed using an anti-GFP antibody (green, middle panel). The right panel presents a merged view. Panel B presents a comparison of blood and lymphatic vessel density between the caput and cauda as described in Figure 2 legend. The Mann–Whitney test was used to determine statistical significance (**p<0.001, *p<0.01).
Figure 2—figure supplement 3.
Cross-sectional views of the clarified caput and cauda epididymides.
Panel A presents median slices of the caput (left) and cauda (right) shown in Figure 2 for the PLVAP blood marker (red) and the lymphatic markers (VEGFR3:YFP, LYVE1, PROX1, and PDPN in green, cyan, magenta, and white, respectively). The epididymis used for PLVAP detection is the contralateral organ of the one used for lymphatic markers. The white-squared regions in each photograph (left in caput and cauda) are enlarged in the right photographs. PLVAP+ micro-vascularization (red) is visible at the peritubular epithelium level of the initial segment (IS)/S1 and its expression markedly decreases in the other segments. At higher magnification, a network of blood capillaries surrounds each tubule mainly at the level of the IS/S1 while intertubular vessels can be observed in segment 3 (S3). In the cauda (S10), PLVAPpos vasculature is less dense and is mostly located in the intertubular space. The VEGFR3:YFP transgene (green), revealed by an anti-GFP antibody, is abundant in the caput and in particular in the IS/S1. Enlargements show punctiform labeling at the peritubular level and in the intertubular zone. On can note the presence of very large lymphatics at the intertubular level (white star). In the cauda (S10), reactivity is mainly interstitial, stringy, and compatible with flattened lymphatic vessels trapped in the extracellular matrix. We also noted at the S9/S10 boundaries (delimited by the dotted line) the presence of large lymphatic vessels (white asterisk), suggesting that important drainage takes place at this location. The lymphatic marker LYVE1 in the caput is mainly interstitial and clearly stronger in the IS/S1. We also noticed that the lymphatics detected with the transgene (VEGFR3:YFP) and with LYVE1 present differences (white arrows), in agreement with previous studies reporting heterogeneity for these markers at the level of the lymphatics (Pawlak and Caron, 2020; Ulvmar and Mäkinen, 2016). In the cauda, LYVE1 appears less present compared with VEGFR3:YFP. We also noticed differences in localization and intensity between these two lymphatic markers (white arrows). PROX1 (magenta) shows a profile comparable to those obtained for the transgene product and/or LYVE1 in both the caput and cauda. The labeling is punctiform (compatible with a nuclear localization) and filamentous at the level of the IS/S1. The stringy appearance can be explained by the use of a PROX1-biotinylated antibody that generates a fuzzier/coarser signal. PDPN (white) appears abundant in the caput and cauda at the peritubular level of the epididymal epithelium and in the interstitial space. Stereocilia in the initial segment but not in other segments of the caput also show some reactivity with PDPN. Because of the fuzzy PDPN pattern, it is difficult at this resolution to assert that PDPN strictly co-localizes with VEGFR3:YFP, LYVE1, and PROX1. Panel B shows light-sheet confocal (12×) resolution of the caput/IS-S2 region of a VEGFR3:YFP transgenic epididymis (green) or after PLVAP immunodetection (red). The superposition of the two channels (merge) suggests both co-localization but also specific territories. The far right picture shows the superposition of the surface rendering of the two markers, which allows distinguishing the lymphatic vasculature that expresses only the transgene (in dark green) from the PLVAP+/VEGFR3:YFP+ vessels (in light green).
Figure 2—video 1.
Three-dimensional (3D) imaging of multiplex labeling of blood and lymphatic networks in the adult mouse
The video shows the overlay of the PLVAP
Figure 2—video 2.
Three-dimensional (3D) imaging of multiplex labeling of blood and lymphatic networks in the adult mouse
The video shows the 3D reconstruction, using light-sheet ultramicroscopy data, of the PLVAP
Figure 2—video 3.
Three-dimensional (3D) imaging of multiplex labeling of blood and lymphatic networks in the adult mouse
The video shows the overlay of the PLVAP
Figure 3.
Densitometry of the blood and lymphatic vasculature of the mouse epididymis.
Panel A shows the surface rendering performed with IMARIS software of blood vessels (red, left) and lymphatic vessels (green, right) in the caput. The surface rendering of vessels in S1 is in white in both cases. Vessel densities shown in the graphs below correspond to the ratio of the volume occupied by vessels in the S1 or caput (minus S1) normalized to the total volume of the S1 or caput (minus S1), respectively. Panel B shows the surface rendering of blood (red, left) and lymphatic (green, right) vessels in the cauda. Blood or lymphatic vessel densities are measured as described in A for the caput. The Mann–Whitney test was used to determine statistical significance (***p<0.0001, **p<0.001, *p<0.01, NS = not significant).
With the four lymphatic markers (VEGFR3:YFP, LYVE1, PROX1, and PDPN), there is an intense and complex network (Figure 2B). This appears very similar in its organization to that of the blood vessels, especially in the IS (Figure 2B). However, outside the IS, lymphatic reactivity appears more extensive than that of the blood vessel marker (see Figure 2—figure supplement 3B). As was the case for the blood vessel marker and as expected because fenestrated vessels express VEGFR3 (Partanen et al., 2000), lymphatic marker reactivity is stronger in the IS (Figure 2B). As seen in Figure 1, large external lymphatic collectors follow the septa, particularly at the IS/S2-S3 and S9/S10 boundaries. These collectors can be seen to dip inside the organ and irrigate the intertubular compartments, especially in the
We performed a surface assessment to better evaluate the density of the blood and lymphatic networks in the most proximal and distal epididymal segments (IS and S10) compared with that observed in the rest of the
Dynamic development of epididymal vasculature related to organ maturation
To better understand the postnatal development of both networks, we followed their emergence during postnatal epididymal development from 10 to 40 DPN, when the organ is functionally mature (n=5). We present in Figure 4A (
Figure 4.
Evolution of the blood and lymphatic vasculature during postnatal epididymal development.
Panel A shows representative three-dimensional (3D) images of blood and lymphatic networks at different postnatal stages during caput ontogenesis. Immunostaining was done with the blood vessel marker MECA32/PLVAP antibody (red) and the lymphatic marker LYVE1 antibody (cyan). The VEGFR3:YFP transgene is revealed by an anti-GFP antibody. Only LYVE1 and VEGFR3 are presented here for better resolution. Immunostaining was also performed with PDPN (not shown in the figure) but PDPN data can be seen in the data sources (figure 4 data sources 1,2 and Figure 4—figure supplement 1 data source 1&2 at https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD618).The dotted line indicates the contours of the initial segment (IS = S1). DPN: days postnatal. The scale bar is 200 µm for 10 DPN, 300 µm for 20 and 30 DPN, and 400 µm for 40 DPN. Panel B shows the evolution of the volume (in log10) of the S1 segment (light blue curve) and the caput region (dark blue) during postnatal development. The superimposed histogram gives the proportion of volume occupied by the S1 relative to the caput region at different stages of postnatal development. Surface rendering of blood vessels and lymphatics was performed using IMARIS software. Blood and lymphatic vessel densities were calculated as described previously (Figures 2 and 3). Quantification was performed on five replicates for the different postnatal developmental stages. Panels C and D are graphs presenting densities (mean and standard error of the mean) of blood and lymphatic vasculature, respectively. The Kruskal–Wallis test with Dunn’s posttest correction was used to determine statistical significance (***p<0.0001, **p<0.001, *p<0.01).
Figure 4—figure supplement 1.
Evolution of the blood and lymphatic vascularization of the epididymal cauda during postnatal development.
Panel A shows representative three-dimensional (3D) views of the blood and lymphatic networks at different postnatal stages of the cauda epididymis ontogenesis from 10 to 40 days postnatal (DPN). Whole-mount immunolabeling of PLVAP+ blood vessels (red) was conducted on the contralateral organ of the one used for the immunolabeling with the lymphatic marker LYVE1 (cyan) and detection of the YFP reporter gene (revealed using an anti-GFP antibody; green). The dotted line indicates the S8–S9/S10 border. The scale bars is 200 µm for 10 and 20 DPN, 300 µm for 30 DPN, and 400 µm for 40 DPN. Panel B shows evolution of the volume (in log10) of the S10 segment (light blue line) and the cauda (S8 to S10; dark blue line) regions during postnatal development. The light gray histogram in the background gives the proportion of volume occupied by the S10 segment within the cauda at different postnatal developmental stages. Panels C and D present surface rendering of blood vessels (C) and lymphatics (D) evaluated using the IMARIS software as described above (see Figures 2 and 3). The curves represent the mean and standard error of the mean of the densities obtained for at least five individuals (for the postnatal development stages) and up to 13 individuals (for the adult stage). The color code in Panel C is orange = S10 and dark red = [S8+S9]. In Panel D, the color code is light green = S10 and dark green = [S8+S9]. The Kruskal–Wallis test with Dunn’s posttest correction was used to determine statistical significance (***p<0.0001).
IS progresses four times faster than the
Looking at the two lymphatic markers (VEGFR3:YFP and LYVE1), we observed very similar kinetics of postnatal lymphatic development in the
Because blood and lymphatic vascular density data suggest neovascularization during postnatal epididymal development, we performed localization and quantification of angiogenic (VEGF-A) and lymphangiogenic (VEGF-C and VEGF-D) factors, whose receptors are VEGFR2 (also known as KDR and FLK1) and VEGFR3, respectively (Figures 5 and 6). Quantification of the VEGFR ligands (VEGF-A, VEGF-C, and VEGF-D) was performed by western blotting as shown in Figure 5A. For the angiogenic ligand (VEGF-A), there was a decrease between 10 and 20 DPN followed by a plateau, and then an increase at 40 DPN; by adulthood, VEGF-A had returned to the initial level (Figure 5B). For the lymphangiogenic ligands (VEGF-C and VEGF-D), we observed a linear increase from 30 DPN for both ligands, consistent with the accumulation of their corresponding receptor VEGFR3 (Figure 5B). An analysis of covariance of the different ligand isoforms of VEGF (see Figure 5—figure supplement 1) with respect to the VEGFR3 receptor (see Figure 5C) shows strong statistical significance for the active ligand isoforms (i.e., the 21 kDa form for VEGF-C and the 24 kDa form for VEGF-D). In addition, the tissue localization of VEGFR2 is very similar to that of VEGFR3 (Figure 6A), being present mainly in a peritubular position at the level of the IS whereas in the more distal part of the organ it seems to be restricted to some interstitial vessels (used with permission from Dr. A. Medvinsky; VEGFR2:GFP mouse strain; Xu et al., 2010). In accordance with previous work (Korpelainen et al., 1998), the tissue localization of its angiogenic ligand (VEGF-A) seems to correspond correctly (Figure 6A), supporting the intense blood vascularization observed in this very proximal segment of the epididymis. Both of the lymphangiogenic ligands—VEGF-C and VEGF-D—show a similar tissue localization, being weakly present in the IS and increasingly present when moving toward the tail of the epididymis, mainly in an interstitial position (Figure 6B). A co-localization (Pearson coefficient = 0.684 ± 0.038) and co-occurrence analysis (Mander’s coefficient VEGF-C=0.934 ± 0.028 and VEGF-D=0.569 ± 0.031) supports the hypothesis of heterodimerization of the two ligands.
Figure 5.
VEGF-A, VEGF-C, and VEGF-D levels vary during postnatal epididymal development.
Panel A shows the expression profile obtained in total extracts of epididymal proteins at different stages of development. The profiles obtained are presented in the following order: VEGFR3, VEGF-A, VEGF-C, and VEGF-D. GAPDH was used for normalization. Panel B shows the quantification of epididymal proteins extracted from six mice. Quantification of VEGFR3 is shown in black, and VEGF-A, VEGF-C, and VEGF-D are shown in red, blue, and green, respectively. The Kruskal–Wallis test and Dunn’s posttest correction were used to determine statistical significance (***p<0.0001, **p<0.001, *p<0.01). Panel C shows the comparison of different isoform profiles. Covariance is assessed by a two-way analysis of variance.
Figure 5—figure supplement 1.
Quantification of all forms of the hemangiogenic and lymphangiogenic ligands VEGF-A, VEGF-C, and VEGF-D.
Different forms of ligands during postnatal development of the epididymis were quantified by optical density measurement with ImageJ software. It was normalized by the level of GAPDH measured in the same organ. The profiles of VEGFR3 (black star) and the active isoforms of VEGF-A (22 kDa, red square), VEGF-C (21 kDa blue square), and VEGF-D (24 kDa, green square) are those presented in Figure 5 and are presented here for comparison with the other isoforms. We noted that both the 55 kDa and 22 kDa VEGF-A profiles behave similarly during postnatal development of the epididymis. There is a drop in these two forms at 20 days postnatal (DPN) followed by a plateau at 30 DPN and then a marked increase from 40 DPN onward VEGF-A could play a different role in the epididymis because the number of PLVAP+ blood vessels do not increase at these stages (see Figure 4—figure supplement 1). Quantification of the different VEGF-C (blue) and VEGF-D (green) isoforms shows a pattern comparable to that observed for lymphatic density during postnatal development (see Figure 4_- and ). However, the present forms are mainly precursors, suggesting progressive lymphangnic activity.
Figure 6.
VEGF receptors and ligands in the mouse epididymis.
Panel A (upper row) shows images (Zeiss Axio-Imager) of the expression of the VEGFR2:GFP transgene (green) (used with permission from Prof. A. Medvinsky) and its ligand VEGF-A (red) obtained from paraffin sections of adult epididymis. The lower row shows confocal views (SP8, Leica) of the same VEGF-A labeling. Panel B shows in (1) a mosaic view (AxioVison scanner) of an epididymis after immunolabeling with VEGF-C (green) and VEGF-D (cyan). Photographs 2–9 were taken with a confocal (SP8, Leica) at the level of the initial segment (IS)/S1 (2), caput (3), corpus (4), and cauda (5). Notable differences in expression of these two ligands are shown in photographs 6–8, which respectively concerns the efferent duct and the IS/S1 boundary, the capsule, and a septum. Photograph 9 is a negative control. Pearson correlation and Mander’s co-occurrence were used to analyze the relation between the two ligands with the IMARIS co-localization module. The values shown represent means with standard error of the mean.
Lymphatics expressing all four markers (VEGFR3:YFP, LYVE1, PROX1, and PDPN) are particularly visible at the septa (Figure 7A). We show in Figure 7B (upper panels) a dynamic 3D view of the
Figure 7.
The septa between epididymal segments are intimately linked to lymphatic vasculature.
Panel A shows the intimate connection between the septa and the lymphatic vasculature in a region of interest of the caput shown in Figure 2. Surface rendering of the lymphatics was performed as described previously using IMARIS software. Panel B (top panel) shows a representative three-dimensional (3D) view of the cauda region at the S8–S9/S10 septa during postnatal epididymal development after surface rendering. Images were obtained using the light-sheet ultramicroscope with a 20× objective lens. Putative LYVE1+ lymphatic precursors are in cyan and VEGFR3:YFP lymphatics are in green, whereas PLVAP+ blood vessels are in red. The clipping plane is positioned at the septum level and the yellow arrow-cursor is directed to the S10. The lower panel shows our interpretation of the events observed concomitantly with a progression via sprouting lymphangiogenesis (green to yellow arrows) of peripheral lymphatics that progress and radiate into the organ at the level of the septum, from the anterior side (adjacent to the testis) to the posterior side of the epididymis and via lymphangio-vasculogenesis. It develops in four steps: (1) swarming of precursors mainly LYVE+ (cyan) and VEGFR3+ (green); (2) a stage of LECP expansion; (3) grouping or clustering step; (4) then assembly and fusion with the lymphatics located at the septum from lymphangiogenesis (green to yellow arrow). For clarity, PLVAP+ blood vessels have not been represented here (A=anterior side adjacent to the testis, P=posterior side, S=septum, LN = lymph node). Scale bar = 30 µm.
Figure 8.
The proposed model of the lympho-septa of the epididymis.
The left scheme presents our view of the lymphatic vasculature at the level of a ‘checkpoint’ septum. The large collectors enter at the septum into the epididymis and radiate within the adjacent segments at the interstitial level, where initial lymphatics are found. The septum where the tubule crosses from one segment to another one would be the most ‘monitored’ site and therefore the richest in lymphatics. The close association of lymphatics with the septa creates both a physical and immunogenic barrier to preserve the organ from ascending infections and thus limited uncontrolled progression of pathogens protecting the epididymis and ultimately the testis from orchitis deleterious to male fertility. e-CLV=external collector lymphatic vessel; i-CLV=internal collector lymphatic vessel; ILV = initial lymphatic vessel; LN = lymph node; S=segment.
Discussion
Using whole-mount multiplex immunolabeling, organ clearing, ultramicroscopy imaging, and 3D reconstruction with a highly adapted lymphatic-YFP transgenic reporter mouse model, the sensitivity and power of our study has allowed us to present for the first time an in-depth analysis of blood and lymphatic networks both in the adult and during postnatal epididymal ontogeny. With the combination of lymphatic markers used in this work, we have shown that a dense network of conventional lymphatics can be observed in the epididymis, with initial lymphatics present in the interstitial compartment and collecting lymphatics present at the septa. We have shown that the lymphatic network is denser on the anterior face of the epididymis (face adjacent to the testis) and progresses in the organ toward the posterior face. We found that the collecting lymphatics are mainly observed on the anterior surface and radiate inward toward the posterior surface following the septa. The initial lymphatics drain the interstitial compartment and join the collectors at the septa, resulting in an asymmetric distribution (anterior/posterior) of lymphatic vascularization. This centrifuge development of the lymphatic network is easily visible (Figure 4A and Figure 2—video 2). This tree structure is logical if we consider that lymphatic vascularization progresses during mouse development following the PP before reaching the
Looking at the postnatal development of the epididymal lymphatic network, our data show a progressive increase that follows the postnatal growth of the organ between 10 and 40 DPN. Beyond this time point, the lymphatic network progresses more in the S1/IS and S10 compartments. This argues for active lymphangiogenesis or/and lymphangio-vasculogenesis, the two modalities by which lymphatics develop, in the
Suzuki, 1982, reported that a testis-like blood network is present in most of the epididymis (segments 2–9) with intertubular vessels connected by perpendicular micro-vessels in a rope ladder organization. Distinctly, in the most proximal (IS/S1) and distal (S10) segments of the epididymis, we found micro-vessels encircling each tubule in a spider web organization with capillaries that penetrate the epithelial sublayer. Because the IS and S10 compartments of the epididymis have distinct embryonic origins and are functionally different (Abe et al., 1984; Johnston et al., 2007), it is difficult to explain this common vascular organization. We hypothesize that the common set-up of these two territories where capillaries penetrate the sub-epithelial layer could be associated with their immune function. The S10 compartment must monitor ascending pathogens and maintain self-tolerance to sperm antigens that accumulate in this storage part of the organ. Similarly, the S1 compartment is the final gatekeeper preventing ascending pathogens from reaching the immune-privileged seminiferous tubules, while at the same time it must be tolerant to sperm-specific antigens entering the epididymal tubule and considered non-self. Therefore, in both compartments, a spider web blood network can be expected to allow immune cells easy access to the epididymal tubule. This should be particularly true for the S1 segment because, independently of infectious situations, it is constantly solicited in the adult animal by the arrival of sperm antigens and by its function of reabsorption of Sertolian fluid requiring very permeable vessels. This hypervascularization of the S1 epididymal compartment is further supported by the fact that it has been shown to be PLVAP
It is interesting to note that during postnatal ontogeny of the epididymis, PLVAP expression increases in the S1 territory but decreases in the other regions of the organ as early as 15 DPN. Whether this is due to blood vessels loss or to PLVAP
Figure 9.
Expression of hybrid lymphatic markers in the mouse epididymis.
This table compares markers associated with hybrid lymphatic vessels described in the literature (for a review, see Pawlak and Caron, 2020) with (column 2) their expression at different segments of the epididymis (source: Mammalian Reproductive Genetic; https://www.mrgd.org). Multiple results for the same gene correspond to the use of different Oligosets in the microarrays used by the MRG. Column 3 summarizes our present results at the initial segment level. The asterisk refers to the publication by Korpelainen et al., 1998.
In conclusion, based on our extensive study of the blood and lymphatic vascularization of the epididymis in mice, we propose that the epididymis presents two types of lymphatic vessels. On the one hand, there are peritubular PLVAP
Figure 10.
Schematic summary of the expansion of the conventional and hybrid lymphatic vasculature during postnatal development of the murine epididymis.
Materials and methods
Mice
In this study, we have used 3- to 6-month-old male C57BL/6 mice (Janvier Labs, France); the male VEGFR3-YFP mice came from the J.L. Thomas laboratory (UPMC-Inserm, Paris, France). The Vegfr3TYFP construct was generated from a BAC clone (RP23-65D23, Chori BACPAC resources) containing a 238kb geneomic fragment spanning the mouse Vegfr3 locus (Calvo et al., 2011). All animals were housed according to institutional guideline with a 12 hr photoperiod and food and water available ad libitum. Measures were taken to keep animal suffering to a minimum. The Auvergne Animal Experiment Ethics Committee (C2E2A) and the French Ministry approved all the following procedures for research (APAFIS authorization #12376-2017112913113962V3).
Antibodies
The primary and secondary antibodies used in clearing methods are indicated in Figure 11B. Additional antibodies used are: rat anti-mouse VEGFR3 (#NB110-61018, Novus Biologicals, LLC, Bio-Techne SAS, France); goat anti-mouse VEGF-A (#AF-493-SP, Novus Biologicals, LLC, Bio-Techne SAS, France), rabbit anti-mouse VEGF-C (#NB110-61022, Novus Biologicals, LLC, Bio-Techne SAS, France), goat anti-VEGF-D (#AF469, R&D Systems, Bio-Techne SAS, France), and rabbit anti-GAPDH (SAB2108668, Sigma-Aldrich Chimie Sarl, France).
Figure 11.
Multiplex labeling workflow used to visualize the blood and lymphatic vasculature of the mouse epididymis clarified by the 3DISCO method.
Panel A presents the multiplex labeling schedule for blood and lymphatic immunodetection. Each square corresponds to 24 hr except for the fixation and streptavidin/biotin treatment, where the time is indicated. Panel B provides detailed information regarding the various antibodies used in the course of the study.
Western blot analysis
Soluble epididymal proteins were prepared, as described previously (Chorfa et al., 2021), separated with sodium dodecyl sulfate–polyacrylamide gel electrophoresis (12% gel), and transferred to polyvinylidene fluoride membranes (Hybond ECL, Amersham Biosciences, Germany). Primary antibodies against the following protein were used: VEGFR3, VEGF-A, VEGF-C, VEGF-D, and GAPDH (served as a loading control). The appropriate HRP-conjugated secondary antibodies, goat anti-rabbit IgG or goat anti-mouse IgG (Abliance, France), were used to visualize the protein bands. Immunoreactive bands were detected by chemiluminescence (Clarity Western ECL Substrate Bio-Rad, France) using the ChemiDoc MP imaging system (Bio-Rad). Protein quantification was performed with ImageJ software. Protein amounts are expressed as relative values to the GAPDH.
Whole-mount multiplex immunolabeling and clearing procedure
Epididymides were collected from mice after cervical dislocation and fixed in 4% paraformaldehyde for a period of time determined by their size (see Figure 11). Then, they were subjected to saturation/permeabilization for 1–5 days depending on their size in PBSGTS solution (1× saline buffer phosphate containing 2% gelatin, 0.5% Triton X-100, and saponin 1 µg/ml) on a rotary shaker (100 rpm) at room temperature. Incubation with primary and secondary antibodies was performed under rotation at 37°C in the same buffer according to the schedule described in Figure 11A. Concentrations of primary and secondary antibodies used are reported in Figure 11B. The immunolabeled epididymides were then embedded in a 1.5% agarose cube in 0.5× Tris–Acetate–EDTA buffer and cleared according to the 3DISCO method (Belle et al., 2014). The samples were stored in a dark place at room temperature until observation.
Immunofluorescence
Paraffin-embedded 5 µm sections of epididymides were subjected to heat-induced antigen recovery and then permeabilized for 30 min at room temperature with PBS supplemented with 0.3% Tween 20 and saponin (1 mg/mL). The sections were incubated for 1 hr at room temperature in the same solution with 10% serum before overnight incubation with the primary antibody at 4°C. Their detection was then carried out with appropriate secondary antibodies conjugated to Alexa Fluor 488, Alexa Fluor 555, or Alexa Fluor 647 (Invitrogen, Thermo Fisher Scientific, France). Nuclei were stained with Hoechst solution (1 µg/µL). The sections were embedded in Mowiol 4-88 (Sigma-Aldrich Chimie Sarl, France) and stored at 4°C until observation.
Image acquisition
Macroscopic microscopy
Macroscopic observations of endogenous VEGFR3:YFP transgene expression of the epididymis and testis were performed using a Leica binocular magnifier (with a 1× objective).
Confocal microscopy
Multiplex immunofluorescence acquisition was performed using a SP8 confocal laser scanning microscope equipped with a Plan Apo λ 40× Oil objective (Leica, Germany). The following parameters were used: pinhole size of 1 airy unit (AU); Z-step: 0.5 µm. Four acquisition sequences were executed: (1) for Alexa 647 detection (638 nm laser 659–698 nm window, using a photomultiplier tubes (PMT) detector at 700 V gain); (2) for Alexa 488 detection (488 nm laser; 493–541 nm window, using a PMT detector at 565 V gain) and for Chromeo 494 detection (488 nm laser; 660–700 nm window, using a PMT detector with a gain of 800 V); (3) for Alexa 555 detection (laser 552 nm; 560–570 nm window, using a PMT detector with a gain of 700 V); and (4) for Hoechst detection (laser 405 nm; 423–518 nm window, using a Hybrid detector with 10% gain).
Light-sheet ultramicroscopy
3D imaging was achieved with an ultramicroscope (LaVision BioTec Miltenyi, Germany) using ImspectorPro software. The images were obtained with either an MI PLAN 2×/NA 0.5, an MI PLAN 4×/0.35 objectives (MVPLAPO, Olympus), or a 20×/0.95 objective (Leica). Each sample was placed in a 100% quartz imaging reservoir filled with dibenzyl ether and illuminated from the side by the laser sheet. Images were acquired with a Andor Neo SCMOS CCD camera (2160×2,160 pixels, LaVision BioTec). All 3D acquisitions were performed with a step size between each image was fixed at 1 μm (1.6 µm/pixel). Lasers at 488, 561, and 635 nm were used to obtain images using two light sources for the
Image processing
Ultramicroscopy datasets were uploaded to IMARIS version 9.7 (Bitplane, Oxford Instruments, England). The stacks were converted to IMARIS files (.ims) and 3D visualizations of z-stack images were generated using the volume rendering function. The vessels were transformed into surface rendering and the volume calculated automatically by IMARIS. Vessel densities were estimated as the ratio of the vessel volume to the total volume of the region. The videos were made IMARIS without deconvolution of the image.
Statistical analysis
All experiments were repeated at least three times and representative images are shown. All statistical analyses were performed with Prism software (GraphPad, USA). The Mann–Whitney test was used to compare two groups. The Kruskal–Wallis test followed by Dunn’s posttest was used to compare more than two groups. A two-way analysis of variance test with a Bonferroni posttest was used to analyze the covariance of ligands (VEGF-A, VEGF-C, and VEGF-D) with the VEGFR3 receptor. The co-localization of the ligands VEGF-C and VEGF-D was evaluated by Pearson correlation and Mander’s overlap coefficient with IMARIS co-localization modules (Bitplane). The values for co-localization analysis represent the mean ± standard error of the mean.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023, Damon-Soubeyrand, Bongiovanni, Chorfa et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Long considered an accessory tubule of the male reproductive system, the epididymis is proving to be a key determinant of male fertility. In addition to its secretory role in ensuring functional maturation and survival of spermatozoa, the epididymis has a complex immune function. Indeed, it must manage both peripheral tolerance to sperm antigens foreign to the immune system and the protection of spermatozoa as well as the organ itself against pathogens ascending the epididymal tubule. Although our knowledge of the immunobiology of this organ is beginning to accumulate at the molecular and cellular levels, the organization of blood and lymphatic networks of this tissue, important players in the immune response, remains largely unknown. In the present report, we have taken advantage of a VEGFR3:YFP transgenic mouse model. Using high-resolution three-dimensional (3D) imaging and organ clearing coupled with multiplex immunodetections of lymphatic (LYVE1, PDPN, PROX1) and/or blood (PLVAP/Meca32) markers, we provide a simultaneous deep 3D view of the lymphatic and blood epididymal vasculature in the mature adult mouse as well as during postnatal development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer