Full Text

Turn on search term navigation

© 2023 Upadhyay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the biggest challenges to be addressed in world agriculture is low nitrogen (N) use efficiency (<40%). To address this issue, researchers have repeatedly underlined the need for greater emphasis on the development and promotion of energy efficient, and environmentally sound novel fertilizers, in addition to improved agronomic management to augment nutrient use efficiency for restoring soil fertility and increasing farm profit. Hence, a fixed plot field experiment was conducted to assess the economic and environmental competency of conventional fertilizers with and without nano-urea (novel fertilizer) in two predominant cropping systems viz., maize-wheat and pearl millet-mustard under semi-arid regions of India. Result indicates that the supply of 75% recommended N with conventional fertilizer along with nano-urea spray (N75PK+nano-urea) reduced the energy requirement by ~8–11% and increased energy use efficiency by ~6–9% over 100% nitrogen through prilled urea fertilizer (business as usual). Furthermore, the application of N75PK+ nano-urea exhibited ~14% higher economic yields in all the crops compared with N50PK+ nano-urea. Application of N75PK+nano-urea registered comparable soil N and dehydrogenase activities (35.8 μg TPF g-1 24 hrs-1 across all crops) over the conventional fertilization (N100PK). This indicates that application of foliar spray of nano-urea with 75% N is a soil supportive production approach. More interestingly, two foliar sprays of nano-urea curtailed nitrogen load by 25% without any yield penalty, besides reducing the greenhouse gases (GHG) emission from 164.2 to 416.5 kg CO2-eq ha-1 under different crops. Therefore, the application of nano-urea along with 75% N through prilled urea is an energy efficient, environmentally robust and economically feasible nutrient management approach for sustainable crop production.

Details

Title
Conjoint application of nano-urea with conventional fertilizers: An energy efficient and environmentally robust approach for sustainable crop production
Author
Upadhyay, Pravin Kumar; Dey, Abir; Singh, Vinod Kumar  VIAFID ORCID Logo  ; Dwivedi, Brahma Swaroop; Singh, Tarunendu; Rajanna, G A  VIAFID ORCID Logo  ; Babu, Subhash; Sanjay Singh Rathore; Singh, Rajiv Kumar; Shekhawat, Kapila; Rangot, Meenakshi; Kumar, Pradeep; Yadav, Dhinu  VIAFID ORCID Logo  ; Singh, Devendra Pratap; Dasgupta, Debarshi; Shukla, Gaurav
First page
e0284009
Section
Research Article
Publication year
2023
Publication date
Jul 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2833614439
Copyright
© 2023 Upadhyay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.