It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A new benchmark case for the evaluation of direct numerical simulation (DNS) and large-eddy simulation (LES) models and methods is presented in this study. The known Taylor–Green vortex is modified by replacing the periodic boundary conditions in one direction with a no-slip boundary. A passive scalar is added and transported from the wall into the fluid. The addition of walls allows for the study of transient-instationary flows in a simple geometry with clean boundary and initial conditions, which is a key requirement for the assessment of LES modeling strategies. The added scalar mimics heat transfer through the wall. The case features reasonable computational cost for highly-resolved LES and DNS calculations. Simulations of the wall-bounded Taylor–Green vortex are easy to setup and do not require additional modeling. The proposed modification of the case is compared to the default Taylor–Green vortex and the difference in flow-physics is discussed. A detailed convergence study with four meshes, each of them refined by a factor of 2, has been conducted. The results reveal that converged second-order statistics can be obtained up to a dimensionless time of
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Duisburg-Essen, Fluid Dynamics, Institute for Energy and Materials Processes (EMPI), Duisburg, Germany (GRID:grid.5718.b) (ISNI:0000 0001 2187 5445)
2 University of the Bundeswehr Munich, Department of Aerospace Engineering, Institute of Applied Mathematics and Scientific Computing, Neubiberg, Germany (GRID:grid.5718.b)