Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A cell model is developed and validated to analyze the performance of polymer electrolyte membrane water electrolysis (PEMWE) stacks and systems. It is used to characterize the oxygen evolution reaction (OER) activity on a TiO2-supported IrO2 catalyst and an unsupported IrO2 powder catalyst. Electrochemical, stack, and system thermoneutral potentials are defined and determined for isothermal and non-isothermal stack operation. Conditions are determined under which the system thermoneutral potential or flammability of H2 in the O2 anode stream limits the stack turndown and operating temperature. Performance is analyzed of a complete PEMWE system with an electrolyzer stack containing an IrO2/TiO2 anode catalyst (2 mg/cm2 Ir loading) and N117-like membrane mitigated for H2 crossover, anode balance-of-plant (BOP) components, cathode BOP system with temperature swing adsorption for H2 purification, and electrical BOP system with transformer and rectifier. At the rated power condition, defined as 2 A/cm2 at 1.9 V, 80 °C, and 30 bar H2 pressure, the stack/system efficiency is 65.3%/60.3% at beginning of life (BOL), decreasing to 59.3%/53.9% at end of life (EOL). The peak stack/system efficiency is 76.3%/70.2% at BOL, decreasing to 71.2%/65.6% at EOL. Improvements in catalyst activity and membrane are identified for a 50% increase in current to 3 A/cm2 at 1.8 V.

Details

Title
Performance of Polymer Electrolyte Membrane Water Electrolysis Systems: Configuration, Stack Materials, Turndown and Efficiency
Author
Wang, Xiaohua  VIAFID ORCID Logo  ; Star, Andrew G; Ahluwalia, Rajesh K  VIAFID ORCID Logo 
First page
4964
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836397925
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.