Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an exploration into the capabilities of an adaptive PID controller within the realm of truck platooning operations, situating the inquiry within the context of Cognitive Radio and AI-enhanced 5G and Beyond 5G (B5G) networks. We developed a Deep Learning (DL) model that emulates an adaptive PID controller, taking into account the implications of factors such as communication latency, packet loss, and communication range, alongside considerations of reliability, robustness, and security. Furthermore, we harnessed a Large Language Model (LLM), GPT-3.5-turbo, to deliver instantaneous performance updates to the PID system, thereby elucidating its potential for incorporation into AI-enabled radio and networks. This research unveils crucial insights for augmenting the performance and safety parameters of vehicle platooning systems within B5G networks, concurrently underlining the prospective applications of LLMs within such technologically advanced communication environments.

Details

Title
LLM Adaptive PID Control for B5G Truck Platooning Systems
Author
de Zarzà, I 1   VIAFID ORCID Logo  ; de Curtò, J 1   VIAFID ORCID Logo  ; Roig, Gemma 2   VIAFID ORCID Logo  ; Calafate, Carlos T 3   VIAFID ORCID Logo 

 Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany; [email protected] (I.d.Z.); [email protected] (G.R.); Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain; [email protected]; Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain 
 Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany; [email protected] (I.d.Z.); [email protected] (G.R.); HESSIAN Center for AI (hessian.AI), 64293 Darmstadt, Germany 
 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain; [email protected] 
First page
5899
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836436353
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.