Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Depleted Monolithic Active Pixel Sensors (DMAPSs) are foreseen as an interesting choice for future high-energy physics experiments, mainly because of the reduced fabrication costs. However, they generally offer limited time resolution due to the stringent requirements of area and power consumption imposed by the targeted spatial resolution. This work describes a methodology to optimize the design of time-to-digital converter (TDC)-based timing electronics that takes advantage of the asymmetrical shape of the pulse at the output of the analog front-end (AFE). Following that methodology, a power and area efficient implementation fully compatible with the RD50-MPW3 solution is proposed. Simulation results show that the proposed solution offers a time resolution of 2.08 ns for a range of energies from 1000 e to 20,000 e, with minimum area and zero quiescent in-pixel power consumption.

Details

Title
Optimizing Time Resolution Electronics for DMAPs
Author
López-Morillo, Enrique  VIAFID ORCID Logo  ; Luján-Martínez, Clara  VIAFID ORCID Logo  ; Hinojo-Montero, José  VIAFID ORCID Logo  ; Márquez-Lasso, Fernando  VIAFID ORCID Logo  ; Francisco Rogelio Palomo  VIAFID ORCID Logo  ; Muñoz-Chavero, Fernando  VIAFID ORCID Logo 
First page
5844
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836496320
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.