Full Text

Turn on search term navigation

© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere.

Methods

To better understand the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia. We performed Bayesian phylodynamic analyses to estimate the time of variants’ introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures.

Results

Here, we detect a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the pandemic’s start. We show that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation).

Conclusions

Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions toward the emergence and circulation of novel SARS-CoV-2 variants.

Plain Language Summary

Colombia reported its first COVID-19 case on 6th March 2020. By April 2022, the country had reported over 6 million infections and over 135,000 deaths. Here, we aim to understand how SARS-CoV-2, the virus that causes COVID-19, spread through Colombia over this time and how the predominant version of the virus (variant) changed over time. We found that there were multiple introductions of different variants from other countries into Colombia during the first two years of the pandemic. The Gamma variant was dominant earlier in 2021 but was replaced by the Delta variant. The Mu variant had the highest potential to be transmitted. Our findings provide valuable insights into the pandemic in Colombia and highlight the importance of continued surveillance of the virus to guide the public health response.

Details

Title
Genomic epidemiology of SARS-CoV-2 variants during the first two years of the pandemic in Colombia
Author
Jimenez-Silva, Cinthy 1   VIAFID ORCID Logo  ; Rivero, Ricardo 2   VIAFID ORCID Logo  ; Douglas, Jordan 3   VIAFID ORCID Logo  ; Bouckaert, Remco 4 ; Villabona-Arenas, Ch. Julian 5   VIAFID ORCID Logo  ; Atkins, Katherine E. 6   VIAFID ORCID Logo  ; Gastelbondo, Bertha 7 ; Calderon, Alfonso 8   VIAFID ORCID Logo  ; Guzman, Camilo 9   VIAFID ORCID Logo  ; Echeverri-De la Hoz, Daniel 8   VIAFID ORCID Logo  ; Muñoz, Marina 10 ; Ballesteros, Nathalia 10 ; Castañeda, Sergio 10 ; Patiño, Luz H. 10 ; Ramirez, Angie 10 ; Luna, Nicolas 10 ; Paniz-Mondolfi, Alberto 11   VIAFID ORCID Logo  ; Serrano-Coll, Hector 12 ; Ramirez, Juan David 13 ; Mattar, Salim 8   VIAFID ORCID Logo  ; Drummond, Alexei J. 14   VIAFID ORCID Logo 

 University of Auckland, Centre for Computational Evolution, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, School of Biological Sciences, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343) 
 Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602); Washington State University, Paul G. Allen School for Global Health, Pullman, Washington, USA (GRID:grid.30064.31) (ISNI:0000 0001 2157 6568) 
 University of Auckland, Centre for Computational Evolution, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, Department of Physics, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343) 
 University of Auckland, Centre for Computational Evolution, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, School of Computer Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343) 
 London School of Hygiene & Tropical Medicine, Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London, UK (GRID:grid.8991.9) (ISNI:0000 0004 0425 469X) 
 London School of Hygiene & Tropical Medicine, Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London, UK (GRID:grid.8991.9) (ISNI:0000 0004 0425 469X); University of Edinburgh, Centre for Global Health, Usher Institute, Edinburgh Medical School, Edinburgh, UK (GRID:grid.4305.2) (ISNI:0000 0004 1936 7988) 
 Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602); Universidad de Córdoba, Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Monteria, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602); Corporación Universitaria del Caribe- CECAR, Grupo de Salud Pública y Auditoría en Salud, Sincelejo, Colombia (GRID:grid.442061.5) (ISNI:0000 0004 0466 9510) 
 Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602) 
 Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602); Universidad de Córdoba, Grupo de Investigación, Evaluación y Desarrollo de Farmacos y Afines - IDEFARMA, Montería, Colombia (GRID:grid.441929.3) (ISNI:0000 0004 0486 6602) 
10  Universidad del Rosario, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Bogotá, Colombia (GRID:grid.412191.e) (ISNI:0000 0001 2205 5940) 
11  Icahn School of Medicine at Mount Sinai, Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, New York, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351) 
12  Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia (GRID:grid.493409.3) (ISNI:0000 0004 6021 0878) 
13  Universidad del Rosario, Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Bogotá, Colombia (GRID:grid.412191.e) (ISNI:0000 0001 2205 5940); Icahn School of Medicine at Mount Sinai, Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, New York, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351) 
14  University of Auckland, Centre for Computational Evolution, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, School of Biological Sciences, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, School of Computer Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343) 
Pages
97
Publication year
2023
Publication date
Dec 2023
Publisher
Springer Nature B.V.
e-ISSN
2730664X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836676602
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.