It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Infection prevention and control (IPC) practices are key to preventing and controlling the spread of pathogens in medical imaging departments (MIDs). The objective of this scoping review was to synthesise information about current research in MID regarding IPC and to use the Systems Engineering Initiative for Patient Safety (SEIPS) model to identify the work system factors (‘persons’, ‘organisation’, ‘tools and technology’, ‘tasks’ and ‘environment’) influencing the practice of IPC, in order to better understand challenges and facilitators that affect IPC in MID. Predefined search terms and medical subject headings relating to IPC in the medical imaging setting were used to search 3 databases. A total of 46 publications met the inclusion criteria, which combined, encompassed all five SEIPS domains influencing IPC. The literature supports the interrelated nature of the five SEIPS domains, and influence to one another. Hand hygiene was a major focus of publications. Mechanisms of infection in contrast-enhanced computed tomography were most reported, with human error, lack of education, and issues associated with devices and processes mechanisms found to influence IPC breaches. A systems approach, such as the SEIPS model, is useful for understanding barriers and hence opportunities for improvement of IPC in the medical imaging setting. Future studies should address individuals’ decision-making processes in the medical imaging setting, and a greater focus should be placed into the procedural steps, education and tools used for contrast media administration.
Critical relevance statement
A systems approach, such as the Systems Engineering Initiative for Patient Safety model, is useful for understanding barriers and hence opportunities for improvement of IPC in the medical imaging setting.
Key points
IPC in the medical imaging setting would benefit from a systems approach.
The role of education and monitoring of IPC compliance requires further research.
Geographical location is a key variable in IPC research in medical imaging.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer