It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The global increase in the frequency, intensity, and adverse impacts of natural hazards on societies and economies necessitates comprehensive vulnerability assessments at regional to national scales. Despite considerable research conducted on this subject, current vulnerability and risk assessments are implemented at relatively coarse resolution, and they are subject to significant uncertainty. Here, we develop a block-level Socio-Economic-Infrastructure Vulnerability (SEIV) index that helps characterize the spatial variation of vulnerability across the conterminous United States. The SEIV index provides vulnerability information at the block level, takes building count and the distance to emergency facilities into consideration in addition to common socioeconomic vulnerability measures and uses a machine-learning algorithm to calculate the relative weight of contributors to improve upon existing vulnerability indices in spatial resolution, comprehensiveness, and subjectivity reduction. Based on such fine resolution data of approximately 11 million blocks, we are able to analyze inequality within smaller political boundaries and find significant differences even between neighboring blocks.
Introduces a precise, machine-learning-based Socio-Economic-Infrastructure Vulnerability index for natural hazards that uncovers stark variations in vulnerability at the block level emphasizing crucial information for risk-informed decision making.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Alabama, Center for Complex Hydrosystems Research, Tuscaloosa, USA (GRID:grid.411015.0) (ISNI:0000 0001 0727 7545); University of Alabama, Department of Civil, Construction and Environmental Engineering, Tuscaloosa, USA (GRID:grid.411015.0) (ISNI:0000 0001 0727 7545)