It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background.Endocrine disruptors (EDC) are exogenous compounds that mimic the action of natural hormones and alter the normal endocrine system. Life-long chronic exposure to Bisphenol A (BPA), a putative EDC, has been linked with risk of metabolic disorders in epidemiological studies.
Objectives.The aim was to study the human health effects of exposure to BPA, using an integrated approach combining environmental epidemiology and toxicology.
Methods.Urinary levels of BPA exposure were measured in participants of the InChianti longitudinal study, a representative population-based study of Italian adults, at the Baseline (1998-00) and nine years later (3rd Wave, 2007-09). Hormones levels and the gene expression of specific target genes were the end points considered. Results were validated in laboratory studies on a human leukemic T-cell line (Jurkat cells).
Results. In general, urinary BPA (uBPA) concentrations were higher among men and younger respondents, and within subjects uBPA concentrations were correlated (r=0.58; p=0.013, model adjusted for age, sex, urinary creatinine).
At baseline, uBPA concentration were associated with higher total testosterone concentrations in men (β = 0.05; 95% CI, 0.02–0.08). In the 3rd wave, gene expression analysis revealed positive associations between uBPA concentrations and ESR2 (estrogen receptor beta) expression (β=0.18; 95% CI: 0.04, 0.32) and ESRRA (estrogen related receptor alpha) expression (β= 0.17; 95% CI: 0.02, 0.32).
In a following in vitrostudy, BPA exposure (0.001-1 micro molar) led to enhanced expression of ESRRA and ESR2 in Jurkat cells over a period of 72 hours.
Conclusions.Results indicate that BPA is bioactive in the human body and is able to alter circulating hormone concentrations and estrogen receptor/estrogen-related receptr gene expression. In particular, given the role of ERRα as a major control point for oxidative metabolism and heart development, this research provides indications on the possible molecular mechanisms of action of BPA in metabolic diseases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer