It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
A significant barrier to biomarker development in the field of acute kidney injury (AKI) is the use of kidney function to identify candidates. Progress in imaging technology makes it possible to detect early structural changes prior to a decline in kidney function. Early identification of those who will advance to chronic kidney disease (CKD) would allow for the initiation of interventions to halt progression. The goal of this study was to use a structural phenotype defined by magnetic resonance imaging and histology to advance biomarker discovery during the transition from AKI to CKD.
Methods
Urine was collected and analyzed from adult C57Bl/6 male mice at four days and 12 weeks after folic acid-induced AKI. Mice were euthanized 12 weeks after AKI and structural metrics were obtained from cationic ferritin-enhanced-MRI (CFE-MRI) and histologic assessment. The fraction of proximal tubules, number of atubular glomeruli (ATG), and area of scarring were measured histologically. The correlation between the urinary biomarkers at the AKI or CKD and CFE-MRI derived features was determined, alone or in combination with the histologic features, using principal components.
Results
Using principal components derived from structural features, twelve urinary proteins were identified at the time of AKI that predicted structural changes 12 weeks after injury. The raw and normalized urinary concentrations of IGFBP-3 and TNFRII strongly correlated to the structural findings from histology and CFE-MRI. Urinary fractalkine concentration at the time of CKD correlated with structural findings of CKD.
Conclusions
We have used structural features to identify several candidate urinary proteins that predict whole kidney pathologic features during the transition from AKI to CKD, including IGFBP-3, TNFRII, and fractalkine. In future work, these biomarkers must be corroborated in patient cohorts to determine their suitability to predict CKD after AKI.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer