It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics.
Methods
The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC.
Results
Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682–0.846) and 0.760 (95% CI, 0.649–0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52–194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways.
Conclusions
Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer