It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Nematodes have lost the ability to synthesise necessary lipids de novo and have complementally evolved the capacity to acquire fatty acids and their derivatives from a diet or host animal. Nematode-specific fatty acid- and retinol-binding protein (FAR) family is one approach that facilitates lipid acquisition, representing an Achilles heel and potential target against roundworms of socioeconomic significance. However, little is known about their detailed functional roles in either free-living or parasitic nematodes.
Methods
A genome-wide identification and curation were performed to screen the FAR family members of Haemonchus contortus. Their transcription patterns in worms were also analysed to identify the targets. Ligand binding assay and molecular docking were conducted to verify the fatty acid binding activities of FAR proteins of interest. RNA interference (RNAi) and heterologous expression (rescuing) experiments were designed to explore the potential roles of the selected FAR protein in nematodes. Localisation of the protein was shown in sections of paraffin-embedded worms after an immunohistochemistry (IHC) assay.
Results
Here, an orthologue of far-6 in the model organism Caenorhabditis elegans (Ce-far-6) was functionally characterised in a parasitic nematode, H. contortus (Hc-far-6). It is demonstrated that knockdown of Ce-far-6 gene did not affect worm fat content, reproduction, or lifespan, but decreased worm body length at an early life stage of C. elegans. In particular, the Ce-far-6 mutant associated phenotype was completely rescued by Hc-far-6, suggesting a conserved functional role. Surprisingly, there were distinct tissue expression patterns of FAR-6 in the free-living C. elegans and parasitic H. contortus. High transcriptional level of Hc-far-6 and dominant expression of FAR-6 in the intestine of the parasitic stage of H. contortus link this gene/protein to nematode parasitism.
Conclusions
These findings substantially enhance our understanding of far genes and the associated lipid biology of this important parasitic nematode at a molecular level, and the approaches established are readily applicable to the studies of far genes in a broad range of parasites.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer