It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The vast majority of agri-food climate-based sustainability analyses use global warming potential (GWP100) as an impact assessment, usually in isolation; however, in recent years, discussions have criticised the ‘across-the-board’ application of GWP100 in Life Cycle Assessments (LCAs), particularly of food systems which generate large amounts of methane (CH4) and considered whether reporting additional and/or alternative metrics may be more applicable to certain circumstances or research questions (e.g. Global Temperature Change Potential (GTP)). This paper reports a largescale sensitivity analysis using a pasture-based beef production system (a high producer of CH4 emissions) as an exemplar to compare various climatatic impact assessments: CO2-equivalents using GWP100 and GTP100, and ‘CO2-warming-equivalents’ using ‘GWP Star’, or GWP*. The inventory for this system was compiled using data from the UK Research and Innovation National Capability, the North Wyke Farm Platform, in Devon, SW England. LCAs can have an important bearing on: (i) policymakers’ decisions; (ii) farmer management decisions; (iii) consumers’ purchasing habits; and (iv) wider perceptions of whether certain activities can be considered ‘sustainable’ or not; it is, therefore, the responsibility of LCA practitioners and scientists to ensure that subjective decisions are tested as robustly as possible through appropriate sensitivity and uncertainty analyses. We demonstrate herein that the choice of climate impact assessment has dramatic effects on interpretation, with GWP100 and GTP100 producing substantially different results due to their different treatments of CH4 in the context of carbon dioxide (CO2) equivalents. Given its dynamic nature and previously proven strong correspondence with climate models, out of the three assessments covered, GWP* provides the most complete coverage of the temporal evolution of temperature change for different greenhouse gas emissions. We extend previous discussions on the limitations of static emission metrics and encourage LCA practitioners to consider due care and attention where additional information or dynamic approaches may prove superior, scientifically speaking, particularly in cases of decision support.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Net Zero and Resilient Farming, Rothamsted Research, North Wyke , Okehampton, Devon EX20 2SB, United Kingdom
2 Nature-based Solutions Initiative, Department of Biology, University of Oxford , Oxford OX1 3SZ, United Kingdom
3 Cranfield University, Cranfield Environment Centre , Bedfordshire MK43 0AL, United Kingdom
4 Scotland’s Rural College, West Mains Road , Edinburgh EH9 3JG, United Kingdom
5 Department of Physics, University of Oxford , Oxford OX1 3PJ, United Kingdom
6 Harper Adams University , Newport, Shropshire TF10 8NB, United Kingdom
7 Net Zero and Resilient Farming, Rothamsted Research, North Wyke , Okehampton, Devon EX20 2SB, United Kingdom; University of Bristol, Bristol Veterinary School , Langford, Somerset BS40 5DU, United Kingdom; Agri-Food and Biosciences Institute, AFBI , Large Park, Hillsborough, Belfast, Northern Ireland BT26 6DR, United Kingdom