It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Users on social networks such as Twitter interact with each other without much knowledge of the real-identity behind the accounts they interact with. This anonymity has created a perfect environment for bot accounts to influence the network by mimicking real-user behaviour. Although not all bot accounts have malicious intent, identifying bot accounts in general is an important and difficult task. In the literature there are three distinct types of feature sets one could use for building machine learning models for classifying bot accounts. These feature-sets are: user profile metadata, natural language features (NLP) extracted from user tweets and finally features extracted from the the underlying social network. Profile metadata and NLP features are typically explored in detail in the bot-detection literature. At the same time less attention has been given to the predictive power of features that can be extracted from the underlying network structure. To fill this gap we explore and compare two classes of embedding algorithms that can be used to take advantage of information that network structure provides. The first class are classical embedding techniques, which focus on learning proximity information. The second class are structural embedding algorithms, which capture the local structure of node neighbourhood. We show that features created using structural embeddings have higher predictive power when it comes to bot detection. This supports the hypothesis that the local social network formed around bot accounts on Twitter contains valuable information that can be used to identify bot accounts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Toronto Metropolitan University, Toronto, Canada
2 Patagona Technologies, Pickering, Canada
3 SGH Warsaw School of Economics, Warsaw, Poland (GRID:grid.426142.7) (ISNI:0000 0001 2097 5735)
4 Toronto Metropolitan University, Toronto, Canada (GRID:grid.426142.7)