It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study determined if 18 days of supplementation with blueberries (BL) compared to placebo (PL) could mitigate muscle soreness and damage and improve inflammation resolution in untrained adults (n = 49, ages 18–50 years) after engaging in a 90-min bout of “weekend warrior” eccentric exercise. The BL freeze dried supplement provided 1 cup of fresh blueberries per day equivalent with 805 mg/day total phenolics and 280 mg/day anthocyanins. Urine levels of eight BL gut-derived phenolics increased after 14- and 18-days supplementation with 83% higher concentrations in BL vs. PL (p < 0.001). The 90-min exercise bout caused significant muscle soreness and damage during 4d of recovery and a decrease in exercise performance with no significant differences between PL and BL. Plasma oxylipins were identified (n = 76) and grouped by fatty acid substrates and enzyme systems. Linoleic acid (LA) oxylipins generated from cytochrome P450 (CYP) (9,10-, 12,13-dihydroxy-9Z-octadecenoic acids) (diHOMEs) were lower in BL vs. PL (treatment effect, p = 0.051). A compositive variable of 9 plasma hydroxydocosahexaenoic acids (HDoHEs) generated from docosahexaenoic acid (DHA, 22:6) and lipoxygenase (LOX) was significantly higher in BL vs. PL (treatment effect, p = 0.008). The composite variable of plasma 14-HDoHE, 17-HDoHE, and the eicosapentaenoic acid (EPA)-derived oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE) (specialized pro-resolving lipid mediators, SPM, intermediates) was significantly higher in BL vs PL (treatment effect, p = 0.014). Pearson correlations showed positive relationships between post-exercise DHA-LOX HDoHEs and SPM intermediates with urine blueberry gut-derived phenolics (r = 0.324, p = 0.023, and r = 0.349, p = 0.015, respectively). These data indicate that 18d intake of 1 cup/day blueberries compared to PL was linked to a reduction in pro-inflammatory diHOMES and sustained elevations in DHA- and EPA-derived anti-inflammatory oxylipins in response to a 90-min bout of unaccustomed exercise by untrained adults.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Appalachian State University, North Carolina Research Campus, Human Performance Laboratory, Biology Department, Kannapolis, USA (GRID:grid.252323.7) (ISNI:0000 0001 2179 3802)
2 UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, USA (GRID:grid.266860.c) (ISNI:0000 0001 0671 255X)
3 Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Food Bioprocessing and Nutrition Sciences Department, Kannapolis, USA (GRID:grid.40803.3f) (ISNI:0000 0001 2173 6074)