It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The mining of open pit mines is widespread in China, and there are many cases of landslide accidents. Therefore, the problem of slope stability is highlighted. The stability of the slope is a factor that directly affects the mining efficiency and the safety of the entire mining process. According to the statistics, there is a 15 percent chance of finding landslide risk in China’s large-scale mines. And due to the expansion of the mining scale of the enterprise, the problem of slope stability has become increasingly obvious, which has become a major subject in the study of open-pit mine engineering. In order to better predict the slope stability coefficient, this study takes a mine in China as a case to deeply discuss the accuracy of different algorithms in the stability calculation, and then uses a deep learning algorithm to study the stability under rainfall conditions. The change of the coefficient and the change of the stability coefficient before and after the slope treatment are experimentally studied with the displacement of the monitoring point. The result shows that the safety coefficient calculated by the algorithm in this paper is about 7% lower than that of the traditional algorithm. In the slope stability analysis before treatment, the safety factor calculated by the algorithm in this paper is 1.086, and the algorithm in this paper is closer to reality. In the stability analysis of the slope after treatment, the safety factor calculated by the algorithm in this paper is 1.227, and the stability factor meets the requirements of the specification. It also shows that the deep learning algorithm effectively improves the efficiency of the slope stability factor prediction and improves security during project development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Liaoning Technical University, School of Civil Engineering, Fuxin, China (GRID:grid.464369.a) (ISNI:0000 0001 1122 661X); Liaoning Technical University, College of Mining, Fuxin, China (GRID:grid.464369.a) (ISNI:0000 0001 1122 661X)
2 Liaoning Technical University, School of Civil Engineering, Fuxin, China (GRID:grid.464369.a) (ISNI:0000 0001 1122 661X)