It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Brain atlases are important reference resources for accurate anatomical description of neuroscience data. Open access, three-dimensional atlases serve as spatial frameworks for integrating experimental data and defining regions-of-interest in analytic workflows. However, naming conventions, parcellation criteria, area definitions, and underlying mapping methodologies differ considerably between atlases and across atlas versions. This lack of standardized description impedes use of atlases in analytic tools and registration of data to different atlases. To establish a machine-readable standard for representing brain atlases, we identified four fundamental atlas elements, defined their relations, and created an ontology model. Here we present our Atlas Ontology Model (AtOM) and exemplify its use by applying it to mouse, rat, and human brain atlases. We discuss how AtOM can facilitate atlas interoperability and data integration, thereby increasing compliance with the FAIR guiding principles. AtOM provides a standardized framework for communication and use of brain atlases to create, use, and refer to specific atlas elements and versions. We argue that AtOM will accelerate analysis, sharing, and reuse of neuroscience data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 University of Oslo, Department of Molecular Medicine, Institute of Basic Medical Sciences, Oslo, Norway (GRID:grid.5510.1) (ISNI:0000 0004 1936 8921)
2 University of California, Department of Neurosciences, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
3 Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X)
4 Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X); Heinrich Heine University Düsseldorf, Institute of Computer Science, Düsseldorf, Germany (GRID:grid.411327.2) (ISNI:0000 0001 2176 9917)