Full Text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.

Details

Title
Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets
Author
Canton, Sophie E 1   VIAFID ORCID Logo  ; Biednov, Mykola 2 ; Pápai, Mátyás 3 ; Lima, Frederico A 2 ; Choi, Tae-Kyu 4 ; Otte, Florian 2 ; Jiang, Yifeng 2 ; Frankenberger, Paul 2 ; Knoll, Martin 2 ; Zalden, Peter 2 ; Gawelda, Wojciech 5 ; Rahaman, Ahibur 6 ; Møller, Klaus B 7 ; Milne, Christopher 2 ; Gosztola, David J 8 ; Zheng, Kaibo 6 ; Retegan, Marius 9 ; Khakhulin, Dmitry 2 

 European XFEL, Schenefeld, Germany; Department of Chemistry, Technical University of Denmark, Lyngby, Denmark 
 European XFEL, Schenefeld, Germany 
 Department of Chemistry, Technical University of Denmark, Lyngby, Denmark; Wigner Research Centre for Physics, Budapest, Hungary 
 European XFEL, Schenefeld, Germany; XFEL Division, Pohang Accelerator Laboratory, Pohang, Republic of Korea 
 European XFEL, Schenefeld, Germany; Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain; IMDEA-Nanociencia, Madrid, Spain; Faculty of Physics, Adam Mickiewicz University, Poznan, Poland 
 Department of Chemistry, Technical University of Denmark, Lyngby, Denmark; Chemical Physics and NanoLund, Lund University, Lund, Sweden 
 Department of Chemistry, Technical University of Denmark, Lyngby, Denmark 
 Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA 
 European Synchrotron Radiation Facility, Grenoble, France 
Section
Research Articles
Publication year
2023
Publication date
Jul 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842743382
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.