Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Frogs from the extensive amphibian family Hylidae are a rich source of peptides with therapeutic potential. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae) collected in Trinidad led to the isolation and structural characterization of five host-defense peptides with limited structural similarity to figainin 2 and picturin peptides from other frog species belonging to the genus Boana. In addition, the skin secretions contained high concentrations of tryptophyllin-BN (WRPFPFL) in both C-terminally α-amidated and non-amidated forms. Figainin 2BN (FLGVALKLGKVLG KALLPLASSLLHSQ) and picturin 1BN (GIFKDTLKKVVAAVLTTVADNIHPK) adopt α-helical conformations in trifluroethanol–water mixtures and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). The CD data also indicate contributions from turn structures. Both peptides and picturin 2BN (GLMDMLKKVGKVALT VAKSALLP) inhibited the growth of clinically relevant Gram-negative and Gram-positive bacteria with MIC values in the range 7.8–62.5 µM. Figainin 2BN was potently cytotoxic to A549, MDA-MB-231 and HT-29 human tumor-derived cells (LC50 = 7–14 µM) but displayed comparable potency against non-neoplastic HUVEC cells (LC50 = 15 µM) indicative of lack of selectivity for cancer cells.

Details

Title
Purification, Conformational Analysis and Cytotoxic Activities of Host-Defense Peptides from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae)
Author
Conlon, J Michael 1   VIAFID ORCID Logo  ; Guilhaudis, Laure 2   VIAFID ORCID Logo  ; Attoub, Samir 3 ; Coquet, Laurent 4   VIAFID ORCID Logo  ; Leprince, Jérôme 5   VIAFID ORCID Logo  ; Jouenne, Thierry 4   VIAFID ORCID Logo  ; Mechkarska, Milena 6   VIAFID ORCID Logo 

 Diabetes Research Centre, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK 
 Laboratoire COBRA (UMR 6014 & FR 3038), UNIROUEN, INSA de Rouen, CNRS, Université Rouen Normandie, 76000 Rouen, France; [email protected] 
 Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; [email protected] 
 CNRS UAR2026 HeRacLeS-PISSARO, CNRS UMR 6270 PBS, Université Rouen Normandie, 76821 Mont-Saint-Aignan, France; [email protected] (L.C.); [email protected] (T.J.) 
 Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Université Rouen Normandie, 76000 Rouen, France; [email protected] 
 Department of Life Sciences, Faculty of Science and Technology, St. Augustine Campus, The University of The West Indies, St. Augustine, Trinidad and Tobago; [email protected] 
First page
1102
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842909728
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.