Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We aim to develop a theoretical methodology for the accurate aqueous pKa prediction of structurally complex phenolic antioxidants and cannabinoids. In this study, five functionals (M06-2X, B3LYP, BHandHLYP, PBE0, and TPSS) and two solvent models (SMD and PCM) were combined with the 6-311++G(d,p) basis set to predict pKa values for twenty structurally simple phenols. None of the direct calculations produced good results. However, the correlations between the calculated Gibbs energy difference of each acid and its conjugate base, ΔGaq(BA)°=ΔGaqA°ΔGaq(HA)°, and the experimental aqueous pKa values had superior predictive accuracy, which was also tested relative to an independent set of ten molecules of which six were structurally complex phenols. New correlations were built with twenty-seven phenols (including the phenols with experimental pKa values from the test set), which were used to make predictions. The best correlation equations used the PCM method and produced mean absolute errors of 0.26–0.27 pKa units and R2 values of 0.957–0.960. The average range of predictions for the potential antioxidants (cannabinoids) was 0.15 (0.25) pKa units, which indicates good agreement between our methodologies. The new correlation equations could be used to make pKa predictions for other phenols in water and potentially in other solvents where they might be more soluble.

Details

Title
Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids
Author
Walton-Raaby, Max 1   VIAFID ORCID Logo  ; Tyler Floen 2 ; García-Díez, Guillermo 2 ; Mora-Diez, Nelaine 2   VIAFID ORCID Logo 

 Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada; [email protected] (M.W.-R.); [email protected] (T.F.); [email protected] (G.G.-D.); Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada 
 Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada; [email protected] (M.W.-R.); [email protected] (T.F.); [email protected] (G.G.-D.) 
First page
1420
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842909731
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.