Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Egg defects such as cracks, dirty spots on the eggshell, and blood spots inside the egg can decrease the quality and market value of table eggs. To address this issue, an automatic method based on computer vision technology was developed for grading eggs and determining defects in a cage-free facility. A two-stage model was developed based on RTMDet and random forest networks for predicting egg category and weight in this study. Results show that the best classification accuracy reached 94–96%.

Abstract

Defective eggs diminish the value of laying hen production, particularly in cage-free systems with a higher incidence of floor eggs. To enhance quality, machine vision and image processing have facilitated the development of automated grading and defect detection systems. Additionally, egg measurement systems utilize weight-sorting for optimal market value. However, few studies have integrated deep learning and machine vision techniques for combined egg classification and weighting. To address this gap, a two-stage model was developed based on real-time multitask detection (RTMDet) and random forest networks to predict egg category and weight. The model uses convolutional neural network (CNN) and regression techniques were used to perform joint egg classification and weighing. RTMDet was used to sort and extract egg features for classification, and a Random Forest algorithm was used to predict egg weight based on the extracted features (major axis and minor axis). The results of the study showed that the best achieved accuracy was 94.8% and best R2 was 96.0%. In addition, the model can be used to automatically exclude non-standard-size eggs and eggs with exterior issues (e.g., calcium deposit, stains, and cracks). This detector is among the first models that perform the joint function of egg-sorting and weighing eggs, and is capable of classifying them into five categories (intact, crack, bloody, floor, and non-standard) and measuring them up to jumbo size. By implementing the findings of this study, the poultry industry can reduce costs and increase productivity, ultimately leading to better-quality products for consumers.

Details

Title
A Computer Vision-Based Automatic System for Egg Grading and Defect Detection
Author
Yang, Xiao  VIAFID ORCID Logo  ; Bist, Ramesh Bahadur  VIAFID ORCID Logo  ; Subedi, Sachin; Chai, Lilong  VIAFID ORCID Logo 
First page
2354
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842912625
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.