Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The Arctic is experiencing a significant temperature increase under the global warming trend. As a result, the Arctic permafrost is thawing, glacial meltwater is gathering, and the depressions are gradually forming lakes, affecting the composition and material cycles of the terrestrial ecosystems. Two meltwater lakes with different landscapes in the Ny-Ålesund region of the Arctic were taken as study objects. The structure of the archaeal community and the influence of soil physiochemical factors on the archaeal community were investigated. The differences in the archaeal community structure between the intertidal and subtidal zones of the two lakes were compared, and the reasons for the differences were analyzed and discussed. A redundancy analysis identified NH4+, SiO32−, MC, NO3, and NO2 as key soil physicochemical factors that have significantly influenced the structure of the archaeal community. The hub archaea in the archaeal community were identified by weighted gene co-expression network analysis (WGCNA). The use of WGCNA in this study provides new ideas for future research on the microbial community structure. In the context of global warming, this study contributes to research on archaeal communities in Arctic meltwater lakes in response to climate change.

Abstract

Two typical lakes formed from meltwater in the Ny-Ålesund area were taken as the study subjects in 2018. To investigate the archaeal community compositions of the two lakes, 16S rRNA genes from soil samples from the intertidal and subtidal zones of the two lakes were sequenced with high throughput. At the phylum level, the intertidal zone was dominated by Crenarchaeota and the subtidal zone was dominated by Halobacter; at the genus level, the intertidal zone was dominated by Nitrososphaeraceae_unclassified and Candidatus_Nitrocosmicus, while the subtidal zone was dominated by Methanoregula. The soil physicochemical factors pH, moisture content (MC), total organic carbon (TOC), total organic nitrogen (TON), nitrite nitrogen (NO2-N), and nitrate nitrogen (NO3-N) were significantly different in the intertidal and subtidal zones of the lake. By redundancy analysis, the results indicated that NH4+-N, SiO32−-Si, MC, NO3-N, and NO2-N have had highly significant effects on the archaeal diversity and distribution. A weighted gene co-expression network analysis (WGCNA) was used to search for hub archaea associated with physicochemical factors. The results suggested that these physicochemical factors play important roles in the diversity and structure of the archaeal community at different sites by altering the abundance of certain hub archaea. In addition, Woesearchaeales was found to be the hub archaea genus at every site.

Details

Title
Study of Archaeal Diversity in the Arctic Meltwater Lake Region
Author
Qin, Yiling 1 ; Wang, Nengfei 2 ; Li, Zheng 1 ; Li, Qinxin 3 ; Wang, Long 4 ; Xu, Xiaoyu 2 ; Yin, Xiaofei 1 

 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; [email protected] (Y.Q.); [email protected] (L.Z.); [email protected] (X.Y.) 
 School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China; [email protected] 
 College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; [email protected] 
 Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] 
First page
1023
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842930601
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.