Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The circadian clock adapts to the light–dark cycle and autonomously generates physiological and metabolic rhythmicity. Its activity depends on the central suprachiasmatic pacemaker. However, it also has an independent function in peripheral tissues such as the liver, adipose tissue, and skin, which integrate environmental signals and energy homeostasis. Hair follicles (HFs) maintain homeostasis through the HF cycle, which depends heavily on HF stem cell self-renewal and the related metabolic reprogramming. Studies have shown that circadian clock dysregulation in HFs perturbs cell cycle progression. Moreover, there is increasing evidence that the circadian clock exerts a significant influence on glucose metabolism, feeding/fasting, stem cell differentiation, and senescence. This suggests that circadian metabolic crosstalk plays an essential role in regulating HF regeneration. An improved understanding of the role of the circadian clock in HFs may facilitate the discovery of new drug targets for hair loss. Therefore, the present review provides a discussion of the relationship between the circadian clock and HF regeneration, mainly from the perspective of HF metabolism, and summarizes the current understanding of the mechanisms by which HFs function.

Details

Title
Overview of the Circadian Clock in the Hair Follicle Cycle
Author
Niu, Ye; Wang, Yujie; Chen, Hao; Liu, Xiaomei; Liu, Jinyu
First page
1068
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842993521
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.