This series of five articles (one original article and four reviews) focuses on the most recent and interesting research studies on the biomolecular and radiological diagnosis and the surgical and medical management of meningiomas.
The WHO Classification of 2021 [1] defines the criteria for inclusion into the three histological grades (I, II, III) and identifies 15 different meningioma subtypes. However, it is well known in clinical practice that meningiomas of the same histological grade, mainly grade I meningiomas, show different biological and clinical behavior; this is the case for grade I meningiomas with aggressive behavior and early recurrence.
Many studies on the molecular aspect of meningiomas have disclosed several molecular alterations [2,3,4], most frequently the loss of the neurofibromin 2 (NF2) gene on chromosome 22 [5,6] and TERT promoter mutations [7,8]. The inclusion of these biomolecular markers in diagnostic assessment may allow the identification of patients with a higher risk of progression or recurrence who require close follow-up imaging studies and more aggressive treatment.
Magnetic resonance imaging (MRI) is the modality of choice for assessing meningiomas. In recent years, radiomics applications have been shown to provide additional information. Radiomics is an emerging technique which collects and analyzes high-dimensional quantitative features derived from an explored region. The radiomics process starts with image acquisition and preprocessing, followed by lesion segmentation; then, the extraction of reliable features can be performed. This technique allows for the correlation of quantifiable images of heterogeneous areas within a lesion with previously established pathological and genotypic characteristics. In this way, it is possible to detect tumor features that cannot be identified through traditional analyses [9,10,11,12,13,14,15]. Although radiomics programs for tumor segmentation and characterization are commercially available, those providing predictive and prognostic assessment are not still available in clinical practice. However, radiomics must be considered a valid technique with significant development possibilities.
Although the surgical management of meningiomas is well codified, several still-controversial aspects remain, such as how to define the extent of tumor resection, how to manage invasive meningiomas (aggressive versus more conservative resection) and when to use the endonasal transbasal approaches for midline skull base meningiomas. The Simpson classification, published in 1957 [16], is still used for grading the extent of meningioma resection. However, it was introduced in the pre-microsurgical era; additionally, the evaluation of residual tumor in grade IV is subjective and does not consider the meningioma location. For these reasons, many studies, mainly those in the last 10 years [17,18,19,20,21,22,23], have questioned the Simpson classification and its value in predicting meningioma recurrence. Of the utmost importance is defining the size of tumor remnants in grade IV resections, from small tissue tumor remnants left on the cortex to significant residual nodules. Thus, the Simpson classification is today insufficient and should be modified according to the data of postoperative MRI studies that assess the gross total versus subtotal resection and quantify the size of the residual tumor. Although complete tumor resection with resection or wide coagulation of the dural attachment is the goal of meningioma surgery, this is sometimes difficult or even impossible for some invasive meningiomas. In these instances, an aggressive resection must be balanced with the risk of injury to the neurological and vascular structures [19]. Thus, when complete resection cannot be achieved, it is advisable that the residual tumor be reduced as much as possible, with the aim of increasing the effect of the postoperative radiosurgery. In fact, it has been shown that Simpson grade II and III resections show similar recurrence-free survival rates compared to grade IV recession with radiotherapy [21].
Skull base meningiomas have always represented a challenge for neurosurgeons due to their proximity to important nervous and vascular structures. They have traditionally been operated on through transcranial approaches, which carry the risk of brain damage. In recent decades, midline skull base meningiomas have been treated with increasing frequency through endoscopic endonasal approaches [24], which prevent brain retraction and obtain safe maximal resection with better clinical outcomes. Tuberculum sellae meningiomas grant access to the tumor attachment and vascular feeders [25,26,27]. Selected cases of olfactory groove meningiomas [28,29,30,31] and clivus meningiomas [32,33] may also be treated through extended endoscopic endonasal approaches, while large-size tumors with a hard consistency and close proximity to the vascular structures are contraindications to transabasal approaches. Postoperative cerebrospinal fluid leak is the main surgical problem. The recurrence rates of endoscopic basal approaches will better be defined in the next few years after studies with a longer follow-up period are conducted.
Medical therapy for more aggressive and recurrent meningiomas is still limited in its efficacy, although different cytotoxic agents have been used. In the last decade, the identification of molecular alterations in more aggressive meningiomas has suggested the need for a biomolecular classification with the aim of defining tailored medical treatments [34,35,36]. However, their efficacy must be confirmed by larger studies in the next few years.
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
1. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol.; 2021; 23, pp. 1231-1251. [DOI: https://dx.doi.org/10.1093/neuonc/noab106]
2. Olar, A.; Goodman, L.D.; Wani, K.M.; Boehling, N.S.; Sharma, D.S.; Mody, R.R.; Gumin, J.; Claus, E.B.; Lang, F.F.; Cloughesy, T.F. et al. A gene expression signature predicts recurrence-free survival in meningioma. Oncotarget; 2018; 9, pp. 16087-16098. [DOI: https://dx.doi.org/10.18632/oncotarget.24498]
3. San-Miguel, T.; Navarro, L.; Megías, J.; Muñoz-Hidalgo, L.; Gil-Benso, R.; Roldán, P.; López-Ginés, C.; Cerdá-Nicolás, M. Epigenetic changes underlie the aggressiveness of histologically benign meningiomas that recur. Hum. Pathol.; 2019; 84, pp. 105-114. [DOI: https://dx.doi.org/10.1016/j.humpath.2018.07.035] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30261191]
4. Berghoff, A.S.; Hielscher, T.; Ricken, G.; Furtner, J.; Schrimpf, D.; Widhalm, G.; Rajky, U.; Marosi, C.; Hainfellner, J.A.; von Deimling, A. et al. Prognostic impact of genetic alterations and methylation classes in meningioma. Brain Pathol.; 2022; 32, e12970. [DOI: https://dx.doi.org/10.1111/bpa.12970] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35213082]
5. Mawrin, C.; Perry, A. Pathological classification and molecular genetics of meningiomas. J. Neuro-Oncol.; 2010; 99, pp. 379-391. [DOI: https://dx.doi.org/10.1007/s11060-010-0342-2]
6. Petrilli, A.M.; Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene; 2016; 35, pp. 537-548. [DOI: https://dx.doi.org/10.1038/onc.2015.125]
7. Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T. et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer Inst.; 2016; 108, djv370. [DOI: https://dx.doi.org/10.1093/jnci/djv377] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26668184]
8. Mirian, C.; Grell, K.; Juratli, T.A.; Sahm, F.; Spiegl-Kreinecker, S.; Peyre, M.; Biczok, A.; Tonn, J.C.; Goutagny, S.; Bertero, L. et al. Implementation of TERT promoter mutations improve prognostication of the WHO classification in meningioma. Neuropathol. Appl. Neurobiol.; 2022; 48, e12773. [DOI: https://dx.doi.org/10.1111/nan.12773]
9. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer; 2012; 48, pp. 441-446. [DOI: https://dx.doi.org/10.1016/j.ejca.2011.11.036]
10. Chen, C.; Guo, X.; Wang, J.; Guo, W.; Ma, X.; Xu, J. The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study. Front. Oncol.; 2019; 9, 1338. [DOI: https://dx.doi.org/10.3389/fonc.2019.01338]
11. Wei, J.; Li, L.; Han, Y.; Gu, D.; Chen, Q.; Wang, J.; Li, R.; Zhan, J.; Tian, J.; Zhou, D. Accurate Preoperative Distinction of Intracranial Hemangiopericytoma from Meningioma Using a Multihabitat and Multisequence-Based Radiomics Diagnostic Technique. Front. Oncol.; 2020; 10, 534. [DOI: https://dx.doi.org/10.3389/fonc.2020.00534]
12. Zhu, H.; Fang, Q.; He, H.; Hu, J.; Jiang, D.; Xu, K. Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network. Comput. Math. Methods Med.; 2019; 2019, 7289273. [DOI: https://dx.doi.org/10.1155/2019/7289273]
13. Zhang, Y.; Shang, L.; Chen, C.; Ma, X.; Ou, X.; Wang, J.; Xia, F.; Xu, J. Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base. Front. Oncol.; 2020; 10, 752. [DOI: https://dx.doi.org/10.3389/fonc.2020.00752]
14. Morin, O.; Chen, W.C.; Nassiri, F.; Susko, M.; Magill, S.T.; Vasudevan, H.N.; Wu, A.; Vallières, M.; Gennatas, E.D.; Valdes, G. et al. Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival. Neurooncol. Adv.; 2019; 1, vdz011. [DOI: https://dx.doi.org/10.1093/noajnl/vdz011] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31608329]
15. Fan, Y.; Huo, X.; Li, X.; Wang, L.; Wu, Z. Non-invasive preoperative imaging differential diagnosis of pineal region tumor: A novel developed and validated multiparametric MRI-based clinicoradiomic model. Radiother. Oncol.; 2022; 167, pp. 277-284. [DOI: https://dx.doi.org/10.1016/j.radonc.2022.01.005] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35033600]
16. Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry; 1957; 20, pp. 22-39. [DOI: https://dx.doi.org/10.1136/jnnp.20.1.22]
17. Sughrue, M.E.; Kane, A.J.; Shangari, G.; Rutkowski, M.J.; McDermott, M.W.; Berger, M.S.; Parsa, A.T. The relevance of Simpson Grade I and II resection in modern neurosurgical treatment of World Health Organization Grade I meningiomas. J. Neurosurg.; 2010; 113, pp. 1029-1035. [DOI: https://dx.doi.org/10.3171/2010.3.JNS091971] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20380529]
18. Alvernia, J.E.; Dang, N.D.; Sindou, M.P. Convexity meningiomas: Study of recurrence factors with special emphasis on the cleavage plane in a series of 100 consecutive patients. J. Neurosurg.; 2011; 115, pp. 491-498. [DOI: https://dx.doi.org/10.3171/2011.4.JNS101922] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21663413]
19. Gousias, K.; Schramm, J.; Simon, M. The Simpson grading revisited: Aggressive surgery and its place in modern meningioma management. J. Neurosurg.; 2016; 125, pp. 551-560. [DOI: https://dx.doi.org/10.3171/2015.9.JNS15754]
20. Otero-Rodriguez, A.; Tabernero, M.D.; Munoz-Martin, M.C.; Sousa, P.; Orfao, A.; Pascual-Argente, D.; Gonzalez-Tablas, M.; Ruiz-Martin, L. Re-Evaluating Simpson Grade I, II, and III Resections in Neurosurgical Treatment of World Health Organization Grade I Meningiomas. World Neurosurg.; 2016; 96, pp. 483-488. [DOI: https://dx.doi.org/10.1016/j.wneu.2016.09.007]
21. Przybylowski, C.J.; Hendricks, B.K.; Frisoli, F.A.; Zhao, X.; Cavallo, C.; Moreira, L.B.; Gandhi, S.; Sanai, N.; Almefty, K.K.; Lawton, M.T. et al. Prognostic value of the Simpson grading scale in modern meningioma surgery: Barrow Neurological Institute experience. J. Neurosurg.; 2020; pp. 1-9. [DOI: https://dx.doi.org/10.3171/2020.6.JNS20374]
22. Rapoport, B.I.; McDermott, M.W.; Schwartz, T.H. Letter to the Editor. Time to move beyond the Simpson scale in meningioma surgery. J. Neurosurg.; 2021; pp. 1-2. [DOI: https://dx.doi.org/10.3171/2020.12.JNS204213] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33607616]
23. Schwartz, T.H.; McDermott, M.W. The Simpson grade: Abandon the scale but preserve the message. J. Neurosurg.; 2020; pp. 1-8. [DOI: https://dx.doi.org/10.3171/2020.6.JNS201904]
24. Cavallo, L.M.; Somma, T.; Solari, D.; Iannuzzo, G.; Frio, F.; Baiano, C.; Cappabianca, P. Endoscopic Endonasal Transsphenoidal Surgery: History and Evolution. World Neurosurg.; 2019; 127, pp. 686-694. [DOI: https://dx.doi.org/10.1016/j.wneu.2019.03.048] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31266131]
25. de Divitiis, E.; Cavallo, L.M.; Esposito, F.; Stella, L.; Messina, A. Extended endoscopic transsphenoidal approach for tuberculum sellae meningiomas. Neurosurgery; 2008; 62, pp. 1192-1201. [DOI: https://dx.doi.org/10.1227/01.NEU.0000333785.04435.2C] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18695540]
26. Bander, E.D.; Singh, H.; Ogilvie, C.B.; Cusic, R.C.; Pisapia, D.J.; Tsiouris, A.J.; Anand, V.K.; Schwartz, T.H. Endoscopic endonasal versus transcranial approach to tuberculum sellae and planum sphenoidale meningiomas in a similar cohort of patients. J. Neurosurg.; 2018; 128, pp. 40-48. [DOI: https://dx.doi.org/10.3171/2016.9.JNS16823]
27. Mallari, R.J.; Thakur, J.D.; Rhee, J.H.; Eisenberg, A.; Krauss, H.; Griffiths, C.; Sivakumar, W.; Barkhoudarian, G.; Kelly, D.F. Endoscopic Endonasal and Supraorbital Removal of Tuberculum Sellae Meningiomas: Anatomic Guides and Operative Nuances for Keyhole Approach Selection. Oper. Neurosurg.; 2021; 21, pp. E71-E81. [DOI: https://dx.doi.org/10.1093/ons/opab138]
28. Fernandez-Miranda, J.C.; Gardner, P.A.; Prevedello, D.M.; Kassam, A.B. Expanded endonasal approach for olfactory groove meningioma. Acta Neurochir.; 2009; 151, pp. 287–288; author reply 289–290. [DOI: https://dx.doi.org/10.1007/s00701-009-0201-0]
29. Koutourousiou, M.; Fernandez-Miranda, J.C.; Wang, E.W.; Snyderman, C.H.; Gardner, P.A. Endoscopic endonasal surgery for olfactory groove meningiomas: Outcomes and limitations in 50 patients. Neurosurg. Focus; 2014; 37, E8. [DOI: https://dx.doi.org/10.3171/2014.7.FOCUS14330]
30. Abbassy, M.; Woodard, T.D.; Sindwani, R.; Recinos, P.F. An Overview of Anterior Skull Base Meningiomas and the Endoscopic Endonasal Approach. Otolaryngol. Clin. N. Am.; 2016; 49, pp. 141-152. [DOI: https://dx.doi.org/10.1016/j.otc.2015.08.002]
31. Schroeder, H.W. Indications and Limitations of the Endoscopic Endonasal Approach for Anterior Cranial Base Meningiomas. World Neurosurg.; 2014; 82, pp. S81-S85. [DOI: https://dx.doi.org/10.1016/j.wneu.2014.07.030] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25496640]
32. Koutourousiou, M.; Fernandez-Miranda, J.C.; Filho, F.V.-G.; de Almeida, J.R.; Wang, E.W.; Snyderman, C.H.; Gardner, P.A. Outcomes of Endonasal and Lateral Approaches to Petroclival Meningiomas. World Neurosurg.; 2017; 99, pp. 500-517. [DOI: https://dx.doi.org/10.1016/j.wneu.2016.12.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27965073]
33. Freeman, J.L.; Sampath, R.; Quattlebaum, S.C.; Casey, M.A.; Folzenlogen, Z.A.; Ramakrishnan, V.R.; Youssef, A.S. Expanding the endoscopic transpterygoid corridor to the petroclival region: Anatomical study and volumetric comparative analysis. J. Neurosurg.; 2018; 128, pp. 1855-1864. [DOI: https://dx.doi.org/10.3171/2017.1.JNS161788] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28731399]
34. Preusser, M.; Brastianos, P.; Mawrin, C. Advances in meningioma genetics: Novel therapeutic opportunities. Nat. Rev. Neurol.; 2018; 14, pp. 106-115. [DOI: https://dx.doi.org/10.1038/nrneurol.2017.168]
35. Kaley, T.; Barani, I.; Chamberlain, M.; McDermott, M.; Panageas, K.; Raizer, J.; Rogers, L.; Schiff, D.; Vogelbaum, M.; Weber, D. et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: A RANO review. Neuro Oncol.; 2014; 16, pp. 829-840. [DOI: https://dx.doi.org/10.1093/neuonc/not330]
36. Huang, R.Y.; Bi, W.L.; Weller, M.; Kaley, T.; Blakeley, J.; Dunn, I.; Galanis, E.; Preusser, M.; McDermott, M.; Rogers, L. et al. Proposed response assessment and endpoints for meningioma clinical trials: Report from the Response Assessment in Neuro-Oncology Working Group. Neuro Oncol.; 2019; 21, pp. 26-36. [DOI: https://dx.doi.org/10.1093/neuonc/noy137]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Details


1 Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, 80131 Naples, Italy
2 Department of Advanced Biomedical Sciences, Section of Pathology, School of Medicine, University “Federico II” of Naples, 80131 Naples, Italy