Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

cGAS-STING signaling is a major pathway in inducing type Ⅰ IFN, which plays a crucial role in the defense against T. gondii infection. In contrast, T. gondii develops multiple strategies to counteract the host defense, causing serious diseases in a wide range of hosts. Here, we demonstrate that T. gondii rhoptry protein 16 (ROP16) dampens type I interferon signaling via the inhibition of the cGAS (cyclic GMP-AMP synthase) pathway through the polyubiquitination of STING. Mechanistically, ROP16 interacts with STING through the SignalP domain and inhibits the K63-linked ubiquitination of STING in an NLS (nuclear localization signal)-domain-dependent manner. Consequently, knocking out the ROP16 in PRU tachyzoites promotes the STING-mediated production of type I IFNs and limits the replication of T. gondii. Together, these findings describe a distinct pathway where T. gondii exploits the ubiquitination of STING to evade host anti-parasite immunity, revealing new insights into the interaction between the host and parasites.

Details

Title
ROP16 of Toxoplasma gondii Inhibits Innate Immunity by Triggering cGAS-STING Pathway Inactivity through the Polyubiquitination of STING
Author
Qi-Wang, Jin 1 ; Yu, Ting 1 ; Pan, Ming 1 ; Yi-Min, Fan 1 ; Si-Yang, Huang 2   VIAFID ORCID Logo 

 Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China 
 Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China 
First page
1862
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843038767
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.