Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study shows the mercerization process (NaOH) and its effect on the physicochemical characteristics of rice straw. In total, 12 samples were analyzed, 3 as a comparative basis and 9 that were exposed to different concentrations of NaOH (1%, 2%, and 3%) and times, in hours, of exposure in an alkaline environment (1 h, 2 h, and 3 h). The loss of silica and reduction in lignin and hemicellulose contents identified in the chemical characterization allowed for a visualization of the surface topography and cross-section of the treated samples, making it possible to contrast them with the three untreated samples by comparing their roughness, the appearance of their pores, and the contractions of vascular bundles in their conductive tissue. An analysis of the data showed that the results between some treatments were similar, suggesting a reduction in resources in future research. The mechanical resistance allowed for identifying that the NaOH-1%-1 h treatment obtained a better mechanical resistance in the treated samples. However, NaOH-3%-1 h, with the third lowest resistance, obtained the highest % elongation compared to the other samples. These physicochemical changes with NaOH facilitate the selection of the treatment concerning the fiber–matrix interaction and final performance of the composite material that intends to use rice straw as a reinforcing fiber.

Details

Title
The Mercerization Process and Its Impact on Rice Straw Surface Topography
Author
Hurtado-Figueroa, Oswaldo 1   VIAFID ORCID Logo  ; Alfonso Cobo Escamilla 1   VIAFID ORCID Logo  ; Varum, Humberto 2   VIAFID ORCID Logo 

 Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid—UPM, 28040 Madrid, Spain; [email protected] 
 CONSTRUCT-LESE, Departamento de Engenharia Civil, Faculdade de Engenharia da Universidad do Porto, FEUP, 4200-465 Porto, Portugal; [email protected] 
First page
1573
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843045557
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.