Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extracted sugar beet press pulp (SBPP) is a promising agricultural residue for saccharification and further bioconversion. Combining solid-state fermentation of SBPP with engineered Aspergillus niger for enzyme production followed by hydrolysis of additionally added SBPP in the same bioreactor was studied to produce a sugar solution (hydrolysate) in a one-pot process. The initial aerobic solid-state fermentations were carried out in duplicate on non-milled, wet SBPP (moisture content of 72% (w/v)) with an A. niger strain engineered for constitutive pectinase production for 96 h, and this resulted in polygalacturonase activities of up to 256 U mL−1 in the wet media. Afterwards, water was added to the bioreactor, and the remaining solids were suspended by stirring to dissolve the hydrolytic enzymes. Metabolic activities of A. niger were inactivated by a N2-atmosphere and by increasing the temperature to 50 °C. High solid loads of milled SBPP were added to the stirred-tank reactor with a delay of 24 h to enable sugar yield calculations based on the compositional analysis of the SBPP used. The resulting final sugar concentrations of the hydrolysate after 166 h were 17 g L−1 d-glucose, 18.8 g L−1 l-arabinose, and 12.5 g L−1 d-galacturonic acid, corresponding to sugar yields of 98% d-glucose, 86% l-arabinose, and 50% d-galacturonic acid, respectively. Including the other sugars released during enzymatic hydrolysis in the one-pot process (d-xylose, d-mannose, d-galactose), a total sugar concentration of 54.8 g L−1 was achieved in the hydrolysate. The one-pot process combining hydrolytic enzyme production in solid-state fermentation with high solid loads during enzymatic hydrolysis of the milled SBPP reduces hydrolytic process costs by replacing chemical pre-treatments, enabling the in situ production of SBPP-adapted hydrolytic enzymes, as well as avoiding intermediate enzyme extraction and preparation steps.

Details

Title
Enzymatic One-Pot Hydrolysis of Extracted Sugar Beet Press Pulp after Solid-State Fermentation with an Engineered Aspergillus niger Strain
Author
Knesebeck, Melanie 1 ; Schäfer, Dominik 1 ; Schmitz, Kevin 2 ; Rüllke, Marcel 2 ; Benz, J Philipp 2   VIAFID ORCID Logo  ; Weuster-Botz, Dirk 1   VIAFID ORCID Logo 

 School of Engineering and Design, Technical University of Munich, Biochemical Engineering, Boltzmannstraße 15, 85748 Garching, Germany 
 School of Life Sciences, Technical University of Munich, Fungal Biotechnology in Wood Science, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany 
First page
582
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843049988
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.