Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The penetration of wind turbines and other power sources with strong uncertainty into the grid has increased in recent years. It has brought significant technical challenges to power systems’ operation. The volatility and intermittency of wind power increase the risk of insufficient transmission capacity of the lines. Therefore, the traditional deterministic planning methods for transmission grids are no longer fully applicable. On the other hand, the frequent disasters in recent years have posed a great threat to the power system, especially for the transmission grid. This requires the design of transmission lines with high design standards, such as skeleton networks, to withstand disasters. With the aim to address these problems, a bi-level integrated network planning model for the transmission grid is developed by considering wind power’s uncertainty and load guarantee under disasters. Chance constraints are used in the model to characterize wind power’s uncertainty, and a skeleton network is adopted to cope with disasters. Moreover, based on a convex relaxation method, the chance constraints are converted into the probabilistic inequalities to be solved. The proposed method is simulated in the IEEE 118 bus system, and the obtained network planning scheme is further analyzed in the scenario tests. And the result of the tests proves the validity and reasonableness of the proposed method.

Details

Title
Integrated Transmission Network Planning by Considering Wind Power’s Uncertainty and Disasters
Author
Shi, Yishan 1   VIAFID ORCID Logo  ; Guo, Ruipeng 1 ; Tang, Yuchen 2 ; Lin, Yi 2 ; Yang, Zhanxin 1 

 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (R.G.); [email protected] (Z.Y.) 
 State Grid Fujian Economic Research Institute, Fuzhou 350011, China; [email protected] (Y.T.); [email protected] (Y.L.) 
First page
5336
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843058735
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.