Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Using the methods of transmission electron microscopy and energy-dispersive spectroscopy, we study the microstructure and phase composition of the coating and modified intermetallic layers obtained in a Ti-6Al-4V alloy by the deposition of the Al coating and subsequent processing in low-pressure non-self-sustained arc discharge plasma (CIPT—complex ion-plasma treatment). The deposition of the aluminum coating on the Ti-6Al-4V alloy is accompanied by the formation of a layered and a gradient microstructure: nanocrystalline near the “coating/substrate” interface and ultrafine-grained in the outer part of the aluminum coating, with α-stabilized region of ≈5 µm thick in the surface layer in base titanium alloy. After the CIPT, the coating and the surface of the base titanium alloy have a layered morphology: each of the layers possesses different grain structure and composition. In the direction from the outer surface of the specimen to the base material, the following phase sequence has been confirmed by diffraction and elemental analysis: TiAl3 → TiAl3 + nc-(Al(Ti) + α-Ti) → nc-(Al(Ti) + α-Ti) → TiAl3 → TiAl3 + TiAl → TiAl → Ti3Al → α-Ti alloy → (α + β)-Ti alloy. The nanocrystalline aluminum layer, which has been formed during the deposition of the aluminum coating, does not undergo phase transformation and recrystallization under the CIPT. Nanocrystalline structure can favor the interdiffusion of the elements between the coating and base material, and stimulate phase transformation in coarser grains situated under and over it.

Details

Title
TEM Study of a Layered Composite Structure Produced by Ion-Plasma Treatment of Aluminum Coating on the Ti-6Al-4V Alloy
Author
Nikolaev, Aleksey 1 ; Kamil’ Ramazanov 1 ; Nazarov, Almaz 1 ; Vener Mukhamadeev 1 ; Zagibalova, Elena 2 ; Astafurova, Elena 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering Technology, Institute of Aviation Technologies and Materials, Ufa University of Science and Technology, Zaki Validi st. 32, 450076 Ufa, Russia; [email protected] (A.N.); [email protected] (K.R.); [email protected] (A.N.); [email protected] (V.M.) 
 Institute of Strength Physics and Materials Science, pr. Akademicheskii 2/4, 634055 Tomsk, Russia; [email protected] 
First page
271
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843073037
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.