Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Municipal solid waste (MSW) is a significant resource, especially for biomass-based monetization. In addition to its economic potential, it can also provide an effective pathway for decarbonization in the energy and chemical sectors. In this work, MSW monetization is coupled with the solar-assisted generation of “green” hydrogen and oxygen via electrolysis. The dual utilization of electrolysis-produced hydrogen and oxygen offers several advantages, including the reduction in the carbon footprint, the tunability of the characteristics of synthesis gas (syngas) to conform to the values needed for the manufacture of various chemicals, and the reduction in the overall cost compared to systems focusing on hydrogen generation only. A superstructure is developed to represent the configurations of interest and serve as a basis for formulating an optimization program that can be solved to identify the optimal design and operating strategies. A multi-period optimization formulation is developed to identify the maximum profit subject to the various modeling equations and constraints. The environmental considerations are addressed using the ɛ-constraint method by iteratively varying carbon footprint cuts. A case study is solved for the City of Jeddah, and the results assess the tradeoffs of various design and operating strategies, their impact on profitability, and their environmental impact.

Details

Title
Solar-Assisted Monetization of Municipal Solid Waste
Author
Aldamigh, Eman 1 ; Banerjee, Sarbajit 2 ; El-Halwagi, Mahmoud M 3   VIAFID ORCID Logo 

 Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA 
 Department of Chemistry, Texas A&M University, College Station, TX 77843, USA 
 Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Engineering Experiment Station Gas and Fuels Research Center, College Station, TX 77843, USA 
First page
2174
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843105056
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.