Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With their unique geographical characteristics, semi-closed narrow bays are important places for human survival but vulnerable to pollution. Because pollutants (polycyclic aromatic hydrocarbons, PAHs) migrate and undergo transformation through a dynamic mechanism in bays of this type, environmental authorities have formulated a series of effective measures for pollution prevention and control, but these are difficult to realize. Based on monitoring and historical data, a multiphase-coupled hydrodynamic model combined with a carcinogenic risk-assessment model was able to solve the challenging environmental problem. Results showed that the hydrodynamic condition in the semi-closed narrow bay was very complex. A weaker hydrodynamic force had an adverse influence on the diffusion of pollutants, further amplified in part by the head of the semi-closed narrow bay, resulting in a higher ecological risk. The prediction results indicated that the total amount of PAHs transported from seawater to sediments was about 4.7 × 1013 ng/year, which might cause serious threats to aquaculture or human health.

Details

Title
A Multiphase Coupled Hydrodynamic Model for Fate and Transport Simulation of Polycyclic Aromatic Hydrocarbons in a Semi-Closed Narrow Bay
Author
Cheng, Jiayi  VIAFID ORCID Logo  ; Wang, Ying; Li, Yuxia; Kong, Lingna; Wang, Xiaomeng; Han, Jianbo
First page
634
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843117166
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.