Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We report on the fabrication and testing of a fiber optics sensor based on multimodal interference effects, which aims at the detection of different types of sweeteners dissolved in water. The device, which has a simple structure, commonly known as the SMS configuration, is built by splicing a segment of commercial-grade, coreless multimode fiber (NC-MMF) between two standard single-mode fibers (SMFs). In this configuration, the evanescent field traveling outside the core of the NC-MMF allows the sensing of the refractive index of the surrounding media, making it possible to detect different levels of sugar concentration. The optical sensor was tested with aqueous solutions of glucose, fructose, and sucrose in the concentration range from 0 wt% to 20 wt% at room temperature. The proposed device exhibits a linear response with a sensitivity of 0.1835 nm/wt% for sucrose, 0.1687 nm/wt% for fructose, and 0.1694 nm/wt% for glucose, respectively, with a sensing resolution of around 0.5 wt%. Finally, we show that, despite having similar concentration behavior, some degree of discrimination between the different sugars can be achieved by assessing their thermo-optical response.

Details

Title
Sugar Detection in Aqueous Solution Using an SMS Fiber Device
Author
Mar-Abundis, Nailea 1 ; Fuentes-Rubio, Yadira Aracely 1   VIAFID ORCID Logo  ; Domínguez-Cruz, René Fernando 1   VIAFID ORCID Logo  ; Guzmán-Sepúlveda, José Rafael 2   VIAFID ORCID Logo 

 Centro de Innovación Tecnológica en Eléctrica y Electrónica, Universidad Autónoma de Tamaulipas, Carr. a San Fernando Cruce con Canal Rodhe S/N., Reynosa 88779, Tamaulipas, Mexico; [email protected] (N.M.-A.); [email protected] (R.F.D.-C.) 
 Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV Unidad Monterrey), Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica km 9.5 de la Autopista Nueva al Aeropuerto, Apodaca 66600, Nuevo León, Mexico; [email protected] 
First page
6289
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843124707
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.