Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aviation aims to reduce its climate effect by adopting trajectories that avoid regions of the atmosphere where aviation emissions have a large impact. To that end, prototype algorithmic climate change functions (aCCFs) can be used, which provide spatially and temporally resolved information on aviation's climate effect in terms of future near-surface temperature change. These aCCFs can be calculated with meteorological input data obtained from, e.g., numerical weather prediction models. We present here the open-source Python library called CLIMaCCF, an easy-to-use and flexible tool which efficiently calculates both the individual aCCFs (i.e., aCCF of water vapor, nitrogen oxide (NOx)-induced ozone production and methane depletion, and contrail cirrus) and the merged non-CO2 aCCFs that combine all these individual contributions. To construct merged aCCFs all individual aCCFs are converted to the same physical unit. This unit conversion needs the technical specification of aircraft and engine parameters, i.e., NOx emission indices and flown distance per kilogram of burned fuel. These aircraft- and engine-specific values are provided within CLIMaCCF version V1.0 for a set of aggregated aircraft and engine classes (i.e., regional, single-aisle, wide-body). Moreover, CLIMaCCF allows the user to choose from a range of physical climate metrics (i.e., average temperature response for pulse or future scenario emissions over the time horizons of 20, 50, or 100 years). Finally, we demonstrate the abilities of CLIMaCCF through a series of example applications.

Details

Title
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
Author
Dietmüller, Simone 1 ; Matthes, Sigrun 1   VIAFID ORCID Logo  ; Dahlmann, Katrin 1 ; Yamashita, Hiroshi 1   VIAFID ORCID Logo  ; Simorgh, Abolfazl 2 ; Soler, Manuel 2   VIAFID ORCID Logo  ; Linke, Florian 3 ; Lührs, Benjamin 4 ; Meuser, Maximilian M 3 ; Weder, Christian 4 ; Grewe, Volker 5   VIAFID ORCID Logo  ; Yin, Feijia 6   VIAFID ORCID Logo  ; Castino, Federica 6   VIAFID ORCID Logo 

 Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany 
 Department of Aerospace Engineering, Universidad Carlos III de Madrid, Spain 
 Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany; Institute of Air Transport Systems, Hamburg University of Technology (TUHH), Hamburg, Germany 
 Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany 
 Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands; Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany 
 Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands 
Pages
4405-4425
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2844571418
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.