It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Excitonic states trapped in harmonic moiré wells of twisted heterobilayers is an intriguing testbed for exploring many-body physics. However, the moiré potential is primarily governed by the twist angle, and its dynamic tuning remains a challenge. Here we demonstrate anharmonic tuning of moiré potential in a WS2/WSe2 heterobilayer through gate voltage and optical power. A gate voltage can result in a local in-plane perturbing field with odd parity around the high-symmetry points. This allows us to simultaneously observe the first (linear) and second (parabolic) order Stark shift for the ground state and first excited state, respectively, of the moiré trapped exciton - an effect opposite to conventional quantum-confined Stark shift. Depending on the degree of confinement, these excitons exhibit up to twenty-fold gate-tunability in the lifetime (100 to 5 ns). Also, exciton localization dependent dipolar repulsion leads to an optical power-induced blueshift of ~ 1 meV/μW - a five-fold enhancement over previous reports.
Here, the authors show the dynamic tuning of the moiré potential in a WS2/WSe2 heterobilayer by gate voltage and optical power, allowing for simultaneous observation of the first and second order Stark shift for the ground state and first excited state, respectively, of the moiré trapped exciton.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Indian Institute of Science, Department of Electrical Communication Engineering, Bangalore, India (GRID:grid.34980.36) (ISNI:0000 0001 0482 5067)
2 Indian Institute of Science, Department of Electrical Communication Engineering, Bangalore, India (GRID:grid.34980.36) (ISNI:0000 0001 0482 5067); Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551)
3 Indian Institute of Science, Department of Electrical Communication Engineering, Bangalore, India (GRID:grid.34980.36) (ISNI:0000 0001 0482 5067); Agency for Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), Singapore, Republic of Singapore (GRID:grid.418788.a) (ISNI:0000 0004 0470 809X)
4 National Institute for Materials Science, Research Center for Functional Materials, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)
5 National Institute for Materials Science, International Center for Materials Nanoarchitectonics, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)