Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A significant amount of research has investigated automating medical diagnosis using deep learning. However, because medical data are collected through diagnostic tests, deep learning methods used in existing studies have had a disadvantage in that the number of training samples is insufficient and the labeling cost is high. Training approaches considering the common characteristics of medical images are needed. Therefore, in this study, we investigated approaches to overcome the lack of data for representative medical imaging tasks using transfer learning technologies. The tasks were divided into image classification, object detection, and segmentation, commonly needed functions in medical image analyses. We proposed transfer learning approaches suitable for each task that can be applied when there are little medical image data available. These approaches were experimentally validated in the following applications that share similar issues of lacking data: cervical cancer classification (image classification), skin lesion detection and classification (object detection and classification), and pressure ulcer segmentation (segmentation). We also proposed multi-task learning and ensemble learning that can be applied to these applications. Finally, the approaches were compared with state-of-the-art results. In cervical cancer analysis, the performance was improved by 5.4% in sensitivity. Skin lesion classification showed improvement in accuracy of 8.7%, precision of 28.3%, and sensitivity of 39.7%. Finally, pressure ulcer segmentation improved in accuracy by 1.2%, intersection over union by 16.9%, and Dice similarity coefficient by 3.5%.

Details

Title
An Investigation of Transfer Learning Approaches to Overcome Limited Labeled Data in Medical Image Analysis
Author
Chae, Jinyeong  VIAFID ORCID Logo  ; Kim, Jihie  VIAFID ORCID Logo 
First page
8671
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2848989999
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.