Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to improve the hydraulic performance of a submersible well pump, steady and transient simulations were carried out based on ANSYS CFX software. The head and efficiency of the submersible well pump under standard operating conditions were taken as the optimization objectives, and the impeller outlet placement angle, outlet width, and vane wrap angle were selected as the optimization variables using the Plackett-Burman experimental design method. The RBF neural network training samples were constructed using the uniform experimental design method to build a hydraulic performance prediction model for the submersible well pump, and a multi-objective particle swarm optimization was used to solve the model and obtain the Pareto optimal solution set. Using the head and efficiency of the initial model as the boundary, the Pareto optimal solution and the corresponding structural parameters are sought. After the optimization, the head of the individual with the better head is increased by about 2.65 m, and the efficiency of the individual with the better efficiency is increased by about 2.3 percentage points compared with that of the initial model. The pressure gradient in the impeller flow channel is more obvious, the work capacity is significantly improved, the vortex area of the spatial guide vane is smaller, the flow line is more regular, and the pressure pulsation amplitude at the inlet and outlet of the impeller and the spatial guide vane is significantly reduced.

Details

Title
Multi-Objective Parameter Optimization of Submersible Well Pumps Based on RBF Neural Network and Particle Swarm Optimization
Author
Zhi-Min, Liu 1 ; Xiao-Guang Gao 2   VIAFID ORCID Logo  ; Pan, Yue 2 ; Jiang, Bei 2 

 School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China; Hebei Key Laboratory of Intelligent Industrial Equipment Technology, Handan 056038, China 
 School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China 
First page
8772
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2848994997
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.