Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Digital twin is the digital representation of an entity, and it drives Industry 4.0. This paper presents a bibliometric analysis of digital twin in the supply chain to help researchers, industry practitioners, and academics to understand the trend, development, and focus of the areas of digital twin in the supply chain. This paper found several key clusters of research, including the designing of a digital twin model, integration of a digital twin model, application of digital twin in quality control, and digital twin in digitalization. In the embryonic stage of research, digital twin was tested in the production line with limited optimization. In the development stage, the importance of digital twin in Industry 4.0 was observed, as big data, machine learning, Industrial Internet of Things, blockchain, edge computing, and cloud-based systems complemented digital twin models. Digital twin was applied to improve sustainability in manufacturing and production logistics. In the current prosperity stage with high annual publications, the recent trends of this topic focus on the integration of deep learning, data models, and artificial intelligence for digitalization. This bibliometric analysis also found that the COVID-19 pandemic drove the start of the prosperity stage of digital twin research in the supply chain. Researchers in this field are slowly moving towards applying digital twin for human-centric systems and mass personalization to prepare to transit to Industry 5.0.

Details

Title
A Bibliometric Analysis of Digital Twin in the Supply Chain
Author
Weng Siew Lam  VIAFID ORCID Logo  ; Lam, Weng Hoe  VIAFID ORCID Logo  ; Lee, Pei Fun  VIAFID ORCID Logo 
First page
3350
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2849016911
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.