Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

From the moment a patient is admitted to the hospital, monitoring begins, and specific information is collected. The continuous flow of parameters, including clinical and analytical data, serves as a significant source of information. However, there are situations in which not all values from medical tests can be obtained. This paper aims to predict the medical test values of COVID-19 patients in the intensive care unit (ICU). By retrieving the missing medical test values, the model provides healthcare professionals with an additional tool and more information with which to combat COVID-19. The proposed approach utilizes a customizable deep learning model. Three types of neural networks, namely Multilayer Perceptron (MLP), Long/Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), are employed. The parameters of these neural networks are configured to determine the model that delivers the optimal performance. Evaluation of the model’s performance is conducted using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The application of the proposed model achieves predictions of the retrieved medical test values, resulting in RMSE = 7.237, MAPE = 5.572, and MAE = 4.791. Moreover, the article explores various scenarios in which the model exhibits higher accuracy. This model can be adapted and utilized in the diagnosis of future infectious diseases that share characteristics with Coronavirus Disease 2019 (COVID-19).

Details

Title
Applying Neural Networks to Recover Values of Monitoring Parameters for COVID-19 Patients in the ICU
Author
Celada-Bernal, Sergio 1   VIAFID ORCID Logo  ; Pérez-Acosta, Guillermo 2 ; Travieso-González, Carlos M 1   VIAFID ORCID Logo  ; Blanco-López, José 2 ; Santana-Cabrera, Luciano 2   VIAFID ORCID Logo 

 Signals and Communications Department, IDeTIC, University of Las Palmas de Gran Canaria, Campus de Tafira, E-35017 Las Palmas de Gran Canaria, Spain; [email protected] 
 Intensive Care Unit, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Marítima del Sur s/n, E-35016 Las Palmas de Gran Canaria, Spain; [email protected] (G.P.-A.); [email protected] (J.B.-L.); [email protected] (L.S.-C.) 
First page
3332
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2849016912
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.