Full Text

Turn on search term navigation

© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

Background

Bone defects remain a challenge today. In addition to osteogenic activation, the crucial role of angiogenesis has also gained attention. In particular, vascular endothelial growth factor (VEGF) is likely to play a significant role in bone regeneration, not only to restore blood supply but also to be directly involved in the osteogenic differentiation of mesenchymal stem cells. In this study, to produce additive angiogenic-osteogenic effects in the process of bone regeneration, VEGF and Runt-related transcription factor 2 (Runx2), an essential transcription factor for osteogenic differentiation, were coadministered with messenger RNAs (mRNAs) to bone defects in the rat mandible.

Methods

The mRNAs encoding VEGF or Runx2 were prepared via in vitro transcription (IVT). Osteogenic differentiation after mRNA transfection was evaluated using primary osteoblast-like cells, followed by an evaluation of the gene expression levels of osteogenic markers. The mRNAs were then administered to a bone defect prepared in the rat mandible using our original cationic polymer-based carrier, the polyplex nanomicelle. The bone regeneration was evaluated by micro-computerized tomography (μCT) imaging, and histologic analyses.

Results

Osteogenic markers such as osteocalcin (Ocn) and osteopontin (Opn) were significantly upregulated after mRNA transfection. VEGF mRNA was revealed to have a distinct osteoblastic function similar to that of Runx2 mRNA, and the combined use of the two mRNAs resulted in further upregulation of the markers. After in vivo administration into the bone defect, the two mRNAs induced significant enhancement of bone regeneration with increased bone mineralization. Histological analyses using antibodies against the Cluster of Differentiation 31 protein (CD31), alkaline phosphatase (ALP), or OCN revealed that the mRNAs induced the upregulation of osteogenic markers in the defect, together with increased vessel formation, leading to rapid bone formation.

Conclusions

These results demonstrate the feasibility of using mRNA medicines to introduce various therapeutic factors, including transcription factors, into target sites. This study provides valuable information for the development of mRNA therapeutics for tissue engineering.

Details

Title
Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA
Pages
1-16
Publication year
2023
Publication date
2023
Publisher
BioMed Central
ISSN
18809693
e-ISSN
18808190
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2849872999
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.