Abstract

Disposal of dye wastewater can induce detrimental consequences for human health and the environment. The study aims to synthesize composites consisting of core-shell Fe3O4/SiO2/TiO2 modified with Ag. The composites comprise a Fe3O4 core, a SiO2 interlayer, and a TiO2 shell, with Ag being mobilized on the surface of the core and shell structures. Fe3O4/SiO2/TiO2@Ag composite was employed in the photocatalytic degradation of Congo red dye and antibacterial activity test. The degradation was facilitated by visible light irradiation while considering different factors such as pH solution, the photocatalyst dosage, and the dye's initial concentration. The composite was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDS), Vibrating Sample Magnetometer (VSM), and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS). The findings indicated that the composite exhibited strong magnetic, measuring 49.4 emu/g, with a band gap of 2.92 eV. The composite showed commendable catalytic properties, with degradation efficiency of 96.52% for Congo red dye under conditions: a pH solution of 4, a dosage of 0.5 g/L, and a dye concentration of 10 mg/L at 100 min of irradiation. The photocatalytic degradation kinetic is align with pseudo-first-order reactions. The composite also exhibits remarkable stability and efficiency with 4.83% decline in degradation efficiency after five cycles. Fe3O4/SiO2/TiO2@Ag composite exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus with a Minimum Inhibitory Concentration (MIC) value of 250 mg/L.

Details

Title
Core-shell Fe3O4/SiO2/TiO2 Magnetic Modified Ag for the Photocatalytic Degradation of Congo Red Dye and Antibacterial Activity
Author
Hariani, Poedji Loekitowati; Salni, Salni  VIAFID ORCID Logo  ; Said, Muhammad  VIAFID ORCID Logo  ; Farahdiba, Rahfi
Pages
315-330
Section
Original Research Articles
Publication year
2023
Publication date
2023
Publisher
Department of Chemical Engineering, Diponegoro University
e-ISSN
19782993
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2851085975
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.