It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The accelerating pace of biomedical publication has made it impractical to manually, systematically identify papers containing specific information and extract this information. This is especially challenging when the information itself resides beyond titles or abstracts. For emerging science, with a limited set of known papers of interest and an incomplete information model, this is of pressing concern. A timely example in retrospect is the identification of immune signatures (coherent sets of biomarkers) driving differential SARS-CoV-2 infection outcomes.
Implementation
We built a classifier to identify papers containing domain-specific information from the document embeddings of the title and abstract. To train this classifier with limited data, we developed an iterative process leveraging pre-trained SPECTER document embeddings, SVM classifiers and web-enabled expert review to iteratively augment the training set. This training set was then used to create a classifier to identify papers containing domain-specific information. Finally, information was extracted from these papers through a semi-automated system that directly solicited the paper authors to respond via a web-based form.
Results
We demonstrate a classifier that retrieves papers with human COVID-19 immune signatures with a positive predictive value of 86%. The type of immune signature (e.g., gene expression vs. other types of profiling) was also identified with a positive predictive value of 74%. Semi-automated queries to the corresponding authors of these publications requesting signature information achieved a 31% response rate.
Conclusions
Our results demonstrate the efficacy of using a SVM classifier with document embeddings of the title and abstract, to retrieve papers with domain-specific information, even when that information is rarely present in the abstract. Targeted author engagement based on classifier predictions offers a promising pathway to build a semi-structured representation of such information. Through this approach, partially automated literature mining can help rapidly create semi-structured knowledge repositories for automatic analysis of emerging health threats.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer